0

0
0

文字

分享

0
0
0

長喙天蛾訪花吸蜜

賴鵬智
・2011/09/25 ・547字 ・閱讀時間約 1 分鐘 ・SR值 552 ・八年級
相關標籤: 天蛾 (3)

-----廣告,請繼續往下閱讀-----

此影片可全螢幕觀賞,如頻寬夠可在放映後點選更高畫素觀看,效果更佳。洪惠璟攝於2011年8月31日新北市坪林區茶葉博物館旁的「生態園區」。錄影器材:Panasonic HDC-HS700

台灣沒有蜂鳥,但有某些蛾類因為飛行姿態與大小很像蜂鳥,常被誤認為蜂鳥,牠們是昆蟲,屬於鱗翅目天蛾科,統稱「長喙天蛾」。這裡有長喙天蛾訪馬櫻丹花的鏡頭,可以很清楚看到牠飛行與長長的吻管吸蜜的模樣。台灣的長喙天蛾有18種(台灣物種名錄),外觀都很像,種類的分辨在前翅花紋極細微的不同,飛行時就很難辨識。

底下是當天拍到的相片:(攝影器材:Canon EOS 7D+EFS 15-85mm)

文章難易度
賴鵬智
45 篇文章 ・ 0 位粉絲
野FUN生態實業公司總經理

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
天作之合的一吻:大彗星風蘭與它驚奇的30cm之謎——《蘭的 10 個誘惑》
遠流出版_96
・2017/06/01 ・2857字 ・閱讀時間約 5 分鐘 ・SR值 477 ・五年級

西元一八六二年一月,陽光灑落在橡木桌的一角,一只包裹安靜無聲的被放置在桌上,標籤上寫著:「達爾文先生收」。一雙略帶皺紋的手,小心翼翼的將包裹打開。這只包裹,寄自貝曼先生,裡頭裝著他從世界各地採集來的珍奇蘭花,讓達爾文在「蘭花授粉」這個研究主題上獲取更多紀錄與佐證。

當五十多歲的達爾文陸陸續續從箱子裡拿出不同蘭花,並在紙上詳實記錄下這些蘭花的特徵與相對應的傳粉媒介時,箱子裡一朵潔白無瑕的花朵吸引了達爾文的注意。不僅僅是因為花的顏色,它那略與手掌等大的花朵尺寸、蠟質厚實的花瓣,都是那麼的吸引人。其中最令達爾文震驚的是,在這花朵的後方,唇瓣向後延伸出一個細長的花距,而這花距竟不可思議的超過三十公分長。

大彗星風蘭(Angraecum sesquipedale)花被片後方有著長達三十公分的花距。

這種前所未見的花部構造著實困擾著達爾文,他不斷思考:為什麼會出現這麼特殊的花形?是什麼樣的力量造就了這一切?

-----廣告,請繼續往下閱讀-----

包裹中的神祕星狀花朵

這朵有著超長花距的蘭花,是馬達加斯加島嶼上特有的植物,因為它的花期通常在十二月到一月之間,加上花形如夜空中的星芒般,所以有著聖誕星蘭(Christmas star orchid)的稱號。在聖經的記載中,聖誕之星就是耶穌降生時天上那顆特殊的伯利恆之星,目前普遍認知那可能是顆彗星,也因此讓這種蘭花有了大彗星風蘭的俗稱。

風蘭屬(Angraecum)的植物幾乎都有著這樣的長距,但一般而言,長度多半在十公分左右,科學家也觀察到它們幾乎都是以蛾類當作傳粉的媒介。但眼前這朵花距長達三十公分的大彗星風蘭也是如此嗎?達爾文不禁陷入深深的沉思之中。

為了一探究竟,達爾文趕緊從抽屜裡拿出一支細長的探棒,小心翼翼的將探棒深入花距中。結果發現,在花距的上端幾乎沒有花蜜,所有花蜜都集中在花距的最末端,這似乎代表如果有生物想要獲得這裡頭的花蜜,勢必要有一個非常長的口器才能接觸得到。此外,達爾文在用探棒檢查花距裡的花蜜時,在某些特殊的角度下,探針能夠順利移除蕊柱上的藥帽,並沾附到大彗星風蘭的花粉塊。更令達爾文確定的是,當他再將沾有花粉塊的探針重新深入花距內,花粉塊竟然也能非常巧合的黏附到柱頭上。因此,達爾文在他的著作中寫下:「在馬達加斯加的島嶼上,一定有一種能夠傳粉的昆蟲。可能是某種巨大的蛾類,牠的口器可以伸長超過三十公分,而這種蛾類在吸蜜的過程中,能夠協助花粉傳遞,替大彗星風蘭完成傳粉的動作。」

查爾斯.達爾文(Charles Darwin)肖像畫。圖/Wikimedia

-----廣告,請繼續往下閱讀-----

這番爭議性的言論,在當時的學界投下了一顆震撼彈,很多人都想著,怎麼可能會有口器長達三十公分的巨蛾存在?但達爾文非常確信大彗星風蘭和這種巨蛾之間的關係。他認為有著短口器的蛾類因為沒辦法碰到花蜜,所以這種授粉的關係並無法維持,加上口器太短,所以在深入花距時的角度也不對,導致無法順利帶走蕊柱上的花粉塊。因此,達爾文認為巨蛾和大彗星風蘭之間有著相依相存的關係,唯有長口器的巨蛾能夠讓大彗星風蘭成功授粉,並且進一步發育產生種子,如此後代的蘭花就能不斷的保持這樣長距的特色。所以如果馬達加斯加島上這種巨蛾已經滅絕,那麼大彗星風蘭應該也會跟著消失在演化的歷史上,但是我們仍然能夠在自然的環境中找到大彗星風蘭,這就代表,這種有著長口器的巨蛾一定存在於馬達加斯加島上的某個地方。

這樣的信念,直到達爾文辭世的那天還是沒有被證實。雖然之後科學家陸陸續續在非洲、巴西等地觀察到口器將近二十公分長的天蛾,但那個在預言中口器超過三十公分長的天蛾卻始終不見蹤影。四十年過去了,馬達加斯加島上的巨蛾仍然像是一則傳說。

預測之物現身!

到了一九○三年,有科學家在馬達加斯加島上發現一種天蛾。當他們小心翼翼的將天蛾的口器展開的那一瞬間,空氣彷彿凝結了,時光像是倒退回四十年前那一天,就是達爾文站在書桌旁端詳那朵大彗星風蘭的那個時刻。顯示在量尺上的刻度數字讓人不可置信,這隻天蛾的口器長達三十公分,翼展更是超過十五公分!四十年前的預言,在這一刻終於得到了證實,這種天蛾(Xanthopan morgani praedicta),其實與之前在東非觀察到口器長達二十公分的天蛾非常類似,是牠的一個亞種,因此,為了紀念這個如同神話般的故事,這隻天蛾的亞種名被命為 praedicta,也就是預測之物的意思。目前馬達加斯加島上的亞種已和分布於非洲大陸的種類合併,確認為同一類群。

雖然預測之物終於被世人發現,但因為這種天蛾的數量非常稀少,而且都在深夜活動,所以牠與大彗星風蘭之間的關係其實還是不為人知。不過在科學家長期的野外監測下,終於在一九九二年首次記錄到這種天蛾拜訪大彗星風蘭協助傳粉的現象。

-----廣告,請繼續往下閱讀-----

在那個晚上,原本已經死心、不抱任何希望的科學家正準備闔上雙眼,此時突來一陣雙翅拍振的高速頻率,扎扎實實將科學家的瞌睡蟲一掃而空。在那完全不敢呼吸的時刻,只見這隻長喙天蛾伸長了口器,直接瞄準大彗星風蘭蕊柱基部通往長距的開口,毫不猶豫的往長距裡不斷深入,直到頭部碰觸到蕊柱的頂端。

此時長喙天蛾終於獲得長距最末端的甜蜜報酬,在吃飽喝足後,長喙天蛾向上準備離開的瞬間,細長口器拉扯到蕊柱頂端的藥帽,隨著藥帽脫落,花粉塊也順勢向外掉出,花粉塊基部的黏質盤就這樣不偏不倚的黏附在長喙天蛾口器與頭部的相連接處。

大彗星風蘭的花粉塊就這樣順利完成傳遞,留下的只有雙翅的振動聲響及看得入神的科學家,整個故事也終於在這天勾勒出完整的輪廓。回頭一望,竟已揮灑了一百三十年的光陰。

風蘭授粉方式示意圖,請按此觀賞全圖

-----廣告,請繼續往下閱讀-----

風蘭與天蛾的演化之舞

這段歷史雖然已成過去,但除了大彗星風蘭外,綜觀整個分布於非洲及馬達加斯加島上的廣義非洲風蘭,包含了船型風蘭亞族(Aerangidinae)及非洲風蘭亞族(Angraecinae)。這些蘭花都和大彗星風蘭一樣,在與天蛾共同演化的歷程中,皆形成了長距、淡色花朵、帶有香氣這些共同的特徵,但是在花距的長度、角度與形狀上產生不同的變化,以因應不同的天蛾種類,以及區別不同花粉塊的附著位置。

除了與天蛾共同演化外,透過科學家的觀察研究發現,少數風蘭屬植物已經轉變為藉由鳥類傳粉,因此花距長度變得比較短,寬度也變寬,以符合鳥喙的外型。

除了天蛾及鳥類外,是否還有別種生物也在風蘭的生殖上扮演重要的角色呢?舉例來說,科學家在馬達加斯加這座神祕的島嶼上,其實還發現了另一種風蘭屬的長距風蘭(Angraecumeburneum var. longicalcar),其花距比大彗星風蘭還要長,幾乎達四十公分。因此,馬達加斯加島上或是世界其他的角落還會不會出現我們意想不到的謎樣之物,目前無法肯定,唯一可以確信的是,演化的力量還是持續在進行中。


 

 

本文摘自《蘭的 10 個誘惑:透視蘭花的性吸引力與演化奧祕》遠流出版

-----廣告,請繼續往下閱讀-----
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

0

1
1

文字

分享

0
1
1
長大的喜悅令蟲窒息
陸子鈞
・2011/08/31 ・256字 ・閱讀時間少於 1 分鐘 ・SR值 502 ・六年級

在蛻變成蛾或是蝴蝶之前,毛蟲必須經歷幾次的蛻皮,讓身體有空間能長得更大。但它們怎麼知道何時該蛻皮呢?或許呼吸困難是個關鍵。一篇發表在《美國國家科學院院刊》(Proceedings of the National Academy of Sciences)的研究中,科學家測量天蛾(Manduca sexta)幼蟲的氣管尺寸,發現在兩次蛻皮之間,氣管並不會隨著身體長大。因此,當身體發育到氣管無法維持呼吸效率時,蟲子就開始憋氣,而體內的低氧狀態,會刺激蛻皮。這樣的過程重複幾次後,終會蛻變成為蛾或是蝴蝶。

資料來源:ScienceShot: Breathless Caterpillars Await Molting [25 August 2011]

陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。