0

0
0

文字

分享

0
0
0

若大禹再世(三):生態工法 做法到底有哪些?

陳妤寧
・2014/12/20 ・2686字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

採訪編輯 / 陳妤寧

本文由科技部補助,泛科學獨立製作

台北科技大學土木與防災研究所林鎮洋教授(圖片來源:作者自攝)
台北科技大學土木與防災研究所林鎮洋教授(圖片來源:作者自攝)

為了因應各種情況的水災,河溪在平日也需要「保養」;如果說上游的主角是森林保土、下游的角色是溼地和滯洪池,那麼中游的守備範圍,就是以河道和河岸經營為重的野溪生態工法了。當土木這個千年老行業,面對加入「生態」考量的訴求,會出現什麼具體的可行作法?

台北科技大學土木與防災研究所的林鎮洋教授說,土木是一門古老的行業,而「安全」是歷史以來的第一考量。當人們開始重新省思環境保護對於工程的重要性,以生態和永續為目標的工程理念因運而生。然而,究竟應稱之為生態工法、永續工程或是其他名詞並不重要。「重點是真的有做出保護生態的成果,不論是用創新工法或是傳統工法,甚至設計者自己也不知道怎麼稱呼的工法也無所謂。名詞的創造,只是為了更便利地推廣概念。」

生態工程企圖同時在安全和生態之間獲得雙贏,那麼在實際案例中有哪些作法呢?

護岸工程,保護河岸減少侵蝕

野溪生態工法的切入點眾多,美國佛蒙特州的鱒河治理計畫,強調事前完善而長期的調查,調查最好期滿一年,以獲取四季完整的生態變化資料,並需選定最能代表「理想型」條件的參考區段(reference site)。從河道內部到河道兩岸,分別需要考慮如何營造友善動物的環境、如何利用植生加強動物生活的空間、這些設計又如何反過來加固對人身安全的保障。例如建造攔河堰維護有利魚蝦生存的河水深度、在河道兩岸的護岸加入植根及石頭作為材料,則可加強邊坡的穩固性。

「護岸」是土木工程中可以容納多種生態考量的一個例子。護岸是保護河岸減少流水衝擊的保護構造。過去的護岸工法以安全為最高、也是唯一考量,如今從材料、結構到植生配置,護岸出現了各種更為生態導向的設計。例如就地取材、使用現地的巨石與礫石,或著以格框工法為基礎,上層填植生土袋,下層堆疊卵石,在結構縫隙中噴植抓土性強的草花種子、蔓藤植物或具有軟枝條之喬灌木,達成保護河床減少沖刷的目的。而以筐、籠、拋石等材料製造多孔隙的空間,也較有利生物生存。

多孔隙營造對水生生物友善的土木空間

多孔的堤防材質對棲息水岸的生物較為友善,而不會如RC(鋼筋混凝土)一般阻擋生物遷徙,或是因表面高溫而不利爬蟲攀附。林教授舉例:「如果因為做了護岸工程,而使原本可以爬過去的樹蛙現在沒辦法再跟他的女朋友見面,那麼原本的生態鏈就被破壞了。」而河床之中其實也有近自然施作的空間,倘若封底石塊因水泥膠節均勻,而無法使地下水在無降雨時滲透入溪,魚蝦失去可供存活的基本水流量。而溪床若缺乏孔隙和大石塊,魚蝦易被水流沖走。以「拋石」或「堆砌石」營造出的多孔隙護岸和河道,讓生物更好避難、休息、繁衍。

其他直接幫助生態的工程嘗試之中,「魚道」是一個經典的解說例子:在水流湍急的急陡地方安設迂迴水路,提供水生動物可順利遷徙或隱藏的適當流速通道。「湍瀨」的設計則相反,目的在於營造淺湍環境,增加水域環境和生物樣態的多樣性。又或著利用現有溪床地形,營造比較深的「深潭」環境,例如雪霸國家公園七家灣溪的櫻花鉤吻鮭,即是因為習慣居住的水潭區受到了泥沙淤積,深度和廣度都受到限制,而傷害了原本櫻花鉤吻鮭住習慣了的地方。

植生營造間接保護動物

台北市內湖的大溝溪,為了和既有的都市開發配合,特別強調結合現有自然條件和人為設施,例如登山步道等遊憩地點,提供都市居民適當的親水空間。相反地,在距離都市人口聚集處較遙遠的野溪工程,不妨嘗試採用放任原則,在營造基本植生環境之後,交由自然力量進行演替,達成生態中的動平衡。例如利用水芙蓉進行水生植物淨化工法,讓植物「主動」淨化水質。堤岸的植生工程除了綠化美觀的效果之外,其實有策略的培養原生種、或是多層次地栽種高低不同的植物,也較有利於生物的多樣性發展。而水岸植物蔽蔭程度會影響水溫高低、落葉情形會影響食物鏈之基礎,凡此種種,岸上岸下的生態是唇齒相依的。

林教授表示,生態工法未必限定使用何種特定材質的工程素材,許多時候,就地取材、不做多餘的搬運和浪費,就是最符合生態永續的工法。最重要的是在整體規劃階段就開始考量生態,生態工法無標準答案,例如蛇籠可能在A地是個因地制宜充分發揮護岸功效的生態工法模範生,到了B地的礫石地基卻會成為淮橘為枳、破壞環境的傳統工法壞寶寶。這也是為何一般大眾接觸到的生態工法觀念,只有停留在最上位的理念宣導,因為實際的作法之間可能有極大的差異。另一個難題是,當鋼筋混凝土勢必比生態工法的自然取材來得堅固耐久時,公民應如何思考和選擇?我們能夠承載大自然多大強度的破壞力?人類是否應該追求無堅不摧的工程建設?或著接受「此等地區不宜人居」的現實?

林教授強調,台灣人的教育之中,生態和工程兩個學門仍易傾向於各擁山頭、跨界溝通仍如同隔層膜。但他數十年前到德國參訪時,便驚訝的發現德國人是將生態思維融入工程學科之中,生態工程亦非跨部會開會、而是不同專業在同部門之下「同吃同住同勞作」,在日常生活中交流彼此的觀念。「夏禹治水、西門豹引漳利農、漢王導運、詹天佑完築京張、十大建設帶動經貿、高鐵興建……」林教授如數家珍的提出一串歷史上的水利和土木工程是如何和文明的發展密不可分,土木工程在未來應自詡為永續工程師,而非消極的環境破壞者。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

 

本文原發表於行政院科技部-科技大觀園「專題報導」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

責任編輯:鄭國威|元智大學資訊社會研究所

 

延伸閱讀:

文章難易度
陳妤寧
38 篇文章 ・ 0 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 373 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策