1

0
0

文字

分享

1
0
0

別跟電腦玩德州撲克

吳京
・2015/01/30 ・1834字 ・閱讀時間約 3 分鐘 ・SR值 500 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

撲克牌或各類的棋藝,數千年來令無數的人為之著迷,究其原因,可用「規則簡單、變化無窮」八個字來形容之。也因如此,進入電腦世代後,卡牌遊戲及棋藝理所當然地成為測式AI人工智慧的指標之一,關於卡、牌、棋的電腦遊戲更是不勝枚舉。

4461228175_8b5c0e453d_o
credit:Sharat Ganapati

雖然說電腦會玩牌、下棋早就不是新聞,但當IBM設計的超級電腦深藍(Deep Blue)打敗世界西洋棋棋王Garry Kasparov時,還是讓世人覺得驚訝,甚至產生人腦不如電腦的感嘆。

是時,乃距今約18年前的1997年。「距今約XX年」這種用語似乎用在50年以上的時間差距比較恰當,然而,在電腦的發展上,5年左右就已是一個世代的交替囉!

2008年時,由加拿大阿爾伯塔大學的電腦科學家所發展的電腦程式「北極星(Polaris)」,在拉斯維加斯所舉辦的人-機德州撲克大賽上,分別對上6位職業級選手,創下了3勝-2負-1和局的亮眼成績。在2015年1月的Science科學期刊上,同個研究團隊更宣稱新一代的電腦程式「仙王座(Cepheus)」可以解構「二人對決的有限注德州撲克比賽」。(取名為「仙王座」玩了一個天文學的梗,由於地球的進動,未來的極軸將指向仙王座而非現在的北極星。)

贏得一場比賽和解構遊戲是二種不同的境界,在賽局理論中,一個已解遊戲代表其數學模式已被掌握,可以推演出最佳的策略,讓全然理性的玩家立於不敗之地,比如說,井字遊戲就是一個怎麼玩也玩不輸的「已解遊戲」。

要解構德州撲克,是一件很瘋狂事,連上述最簡單的圈圈叉叉井字遊戲,交給AI處理,都會被視為一個有765個可能局面,26830個棋局的問題,更何況是52張牌所產生的變化。

當然,18年前的電腦可以打敗世界棋王,現在的程式能破解德州撲克似乎也只是剛好而已。然而,下西洋棋時所有資訊都在棋盤上,電腦可以利用資料庫內的棋譜及演算法,在各種可能中,找出勝算最大的棋步。反觀德州撲克是一種結合公牌撲克梭哈喊注的遊戲,有些資訊是不透明的,而且看過電影「賭神」的人都知道二件事,第一,高義是個雜碎(這不是重點),第二,玩梭哈不只要會算牌,還要有牌運,更要具備會唬人心理素質及特異功能

想當然爾,電腦一定很會算牌,而牌運這種東西,只要玩的局數多一點,在統計上敵我雙方應該是公平的。但,電腦還不至於會唬人吧!?是啦,電腦程式也許不會唬人,不過仙王座(Cepheus)有二座靠山,讓它至少不會被唬

其一是它玩的是「有限注」的德州撲克,代表每次喊(加)注時,僅能增加一單位的籌碼,有了這條規則,就不怕對手大喊一聲「全梭了」,然後在那邊搓牌。另一座山,則是仙王座(Cepheus)真的很會算牌

研究團隊表示,二人對決的德州撲克總共有3.16×1017種遊戲狀態,不過,由於不知道對方的手牌,有些狀態僅能等同視之,對於是否要喊注(bet)、跟注(call)、加注(raise)、過牌(pass)或蓋牌(fold)等等的決策點,剩下3.19×1014個。經過牌局對稱性的數學推算,所有需要處理的資訊,可以縮減到僅有1.38×1013個。

這麼多個決策點,誰來教仙王座(Cepheus)判斷孰優孰劣?答案是沒有人。輸入仙王座的資料僅有遊戲的基本規則而已,仙王座要做正確的決策得靠自已的經驗。這是研究團隊一次用了4000多個CPU,讓仙王座每秒可以跟自已玩60億手的牌,玩了二個月換來的經驗。把全人類有史以來玩牌的次數加起來也沒那它玩1秒那麼多,還要訓練二個月,實在是太犯規了。

但撲克牌總是運氣成份很高的遊戲,所以研究團隊也不敢說仙王座可以百戰百勝,只謙稱可以「本質弱解(essentially weakly solved)」二人對局的有限注德州撲克,意思是這個程式在統計上處於不敗之地。具體來說,如果一個人有跟仙王座同樣的能力,而他每天玩2400場德州撲克,玩了70年,平均而言,他只有1場會輸。

有興趣被挑戰仙王座嗎?你可以在線上跟它對決哦!網址是http://poker.srv.ualberta.ca/play

可惜館主每次連線,網頁都顯示「維修中」,一定是怕我踢館,因為我就是沒有人

參考資料:

  1. 阿爾伯塔大學Cepheus project官方網頁
  2. Know when to fold ’em: Researchers solve heads-up limit hold ’em poker‧” Phy.org Jan 08 2015.
  3. Heads-up limit hold’em poker is solved.” Michael Bowling, Neil Burch, Michael Johanson, Oskari Tammelin, Science, 9 JANUARY 2015, VOL 347 ISSUE 6218,145-149.

本文轉載自吳京的量子咖啡館

文章難易度
所有討論 1
吳京
26 篇文章 ・ 3 位粉絲
正職是二個娃兒的奶爸,副業為部落格《吳京的量子咖啡館》之館主。為人雜學而無術、滑稽而多辯,喜讀科學文章,再用自認有趣的方式轉述,企圖塑造博學又詼諧的假象。被吐嘈時會辯稱:「不是我冷,是你們不懂我的幽默。」

0

1
1

文字

分享

0
1
1
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(nitial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

3
2

文字

分享

0
3
2
若風力、太陽能變成主要能源,如何不被無風陰天弄得全國大停電?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/20 ・3299字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

電網:將電力輸送到各地的網路系統

在十九世紀,電力是在靠近電力需求的地方生產的,但到了二十世紀,規模經濟催生出集中式發電廠、長距離傳輸線和地方的變電站。現在,世界上大多數國家的電力都是透過電網來提供。

電網,就是用來傳輸電力的網路,像是電廠、變電廠、配電系統等等,都是電網的一環。圖/Pixabay

這套系統是為了滿足供電需求──最低需求稱為基本負載(baseload)──所設計的,由最便宜的發電機來滿足。

直到最近,發電方式通常是以燃煤為主(也有國家是以核電或水力發電為主),而且大部分的時間都在運作。會搭配其他發電廠(通常是循環燃氣渦輪發電機)來支援,以滿足每天的負載量變化,也會有可快速運作的小型燃氣渦輪或柴油發電機來應對激增的需求或是發電廠停擺等故障問題。

發電廠和變電站間的輸配電系統很重要,這可確保即使有單一線路或發電廠出現問題,仍舊能夠維持電力供應。電網有辦法將電力輸送到偏遠社區,也能獲得偏遠地區的發電。

再生能源進場後,該如何和傳統電廠互相配合?

現在,太陽光電場和風場在許多電網上提供的電力占比日益升高,這正在改變對發電廠的要求。在一般情況下,一天之中混合使用再生能源和傳統發電廠的發電方式最為經濟,而不是完全使用大型的傳統發電機。

風場和太陽光電場容易受到天氣的影響,現階段該如何讓再生能源電場與一般傳統電廠配合,也是能源議題中的一大考驗。圖/Pixabay

除了提供潔淨的電力外,風場和太陽光電場的營運成本最低──這稱為邊際成本(marginal costs)──因為它們沒有燃料成本,並且會首先調用。

為了讓風場和太陽光電場達到最大使用效能,最好是搭配能夠因應電力供需變化而快速反應的其他發電廠;而且理想上,這些電廠的運作也應該符合經濟效應,運作時消耗的用電量僅占其最大負載量的一小部分。

一般來說,燃煤電廠和核電廠的數量並不會有快速的增減,而燃氣和再生能源電廠則是更好的選項。根據地點的不同,水力發電、生質能、地熱和聚光太陽能(搭配蓄熱儲能)都可以擔任靈活發電的功能。

化石燃料發電廠可以儲存燃料並因應需求來提供電力。風場和太陽光電場與這些可以隨時供電──稱為可調度或固定供應──的發電廠不同,這兩者的運作都取決於天氣這項變數。

運用 AI 技術,擺脫「天氣」這個天生弱點!

儘管有時會出現風力弱和陰天的日子,然而,與一些人想像的剛好相反,擁有大量風力發電和太陽光電的電網其實能夠在需要時提供電力。

透過人工智慧(artificial intelligence,AI)來獲取良好的天氣預報,太陽光電場和風場的輸出變化通常是可以預期的,因此可得到最佳結果。

透過人工智慧的協助,可以更有效的運用電力。圖Envato Elements

當再生能源供應達到總電力需求的 30% 時,這些變化可以輕易透過裝配在電網上的快速反應發電廠來填補,以滿足供電需求的變化。

當一處 1000 兆瓦的大型發電廠意外跳電(可能是設備故障或過載),處理起來可能遠比風力發電或太陽光電的電力突然下降更具挑戰性。備用儲電站必須迅速上線,而風場和太陽光電場若是尚未達到滿載,還可以在有風和晴天的天氣迅速提高其發電量,提供額外的寶貴備用電。

再生能源成為主要來源後,怎麼讓電供保持穩定?

為了提供潔淨、安全和價格低廉的電力,並且在本世紀中葉大幅減少碳排放,避免氣候變遷演變到危及生靈的程度,全球的供電必須以再生能源為主。透過增加再生能源的輸出、地理分布以及與其他電網的連結,再生能源的供電占比將可望提高到電網的 50% 左右。

在一定程度上,增加這類綠電的發電能力可以彌補天氣條件惡劣的情況,而連接大範圍的太陽光電場和風場則可以提供更平穩可靠的電力。

在歐洲,丹麥已經與挪威、瑞典或德國等國進行電力交易,以此來平衡電力供需:在他們自己的風力發電量高時出口電力,而在發電量低時則進口電力。

然而,建立洲際再生電網並非易事。過去曾經有一項 DESERTEC(沙漠科技基金會)的提案,計畫要將北非的太陽能傳送到歐洲,但由於政治不穩定,再加上不同地區和國家對規畫中的電網各有所圖,產生相互衝突的反對意見,因此難以具體實現提案。

增加太陽能板的面積、建立跨國、洲際再生電網,都是維持電力供應穩定的做法。圖/Pixabay

此外,由於太陽能板的成本急劇下降,因此日照多的優勢變得不那麼重要,因為可以靠增加太陽能板的大小來彌補日照少的缺憾,這比支付長距離傳輸費用更為經濟。能夠在地方發電也等於是提供了一份供電的安全保障,不必依賴化石燃料進口。然而,廣泛架設的電網確實對於供需平衡有極大的幫助。

若是能配合供電來調整電力需求,就可降低對儲能廠的需求──這稱為「需量反應(demand response)」──或許可成為一個更便宜的選項,因為那些用來支援電力尖峰的快速反應發電廠的運作成本最高。

智慧電網:更聰明、更彈性的調整電力供應!

使用智慧電網可以讓電網營運商和用戶間進行雙向溝通,調整電力負載量,使其與供電端相等,這樣就能確定出需要從電網中取用的的需求量,或是添加量。

出現短時間停電或減少電力供應時,許多運作仍有可能繼續維持,好比那些具有熱慣性的操作──像是保持鐵或瀝青、熔融物或超市冰箱冷藏食物的溫度;或是建築物的溫度調節──或是在將零件組裝成產品前,先製造出充足的零件備量。

智慧電網最重要的就是雙向的溝通來進行調整。圖/Envato Elements

同樣地,可以透過啟動電爐、大型電解槽或海水淡化廠(以幫助應對氣候變遷造成的乾旱)來增加需求量。在數位化科技的推動下,我們正處於智慧電網革命的開端,這將會對電力負載量造成重大變化,將會讓邁向再生能源的這段過渡期更為容易,並且為客戶帶來更低的成本。

另外,可以用價格差異來鼓勵客戶改變他們的電力需求。在義大利,有推行一個簡單的計畫,是以固定費用(取決於所使用的最大功率)和每度電的價格來回收發電廠的資本和配電成本以及發電成本。

以限制電力需求的方式(讓消費端的電價變得更便宜),白天必須間隔使用電熱水壺、洗衣機和烤箱等電器;如果一次全部使用,就會跳電。

這樣便可降低發電成本中最高的尖峰用電。而在離峰期(例如夜間)提供便宜電價也是一種方式。不過要達到有效調整,需要同時使用智慧電網和智慧電錶。這樣用戶端可以看到他們的消費細節,並選擇僅在低電價或優惠價格時段才使用某些電器設備。

儲能設備對於提高再生能源的發電占比非常有幫助。以太陽光電場和風場這樣的組合來供應夜間用電,往往會有白天過度生產,導致電價下跌的情況。若是沒有儲能設備,必須盡可能出口過剩電力,或是以減少供電來降低損失。短期儲能可以將部分電力從下午轉移到晚上,因此小容量即可以滿足日常需求。

隨著電池成本的急劇下降,這種儲能的可用性變得越來越高,而且也開始取代那些用來補強綠電不足時的快速反應化石燃料電廠。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
8 篇文章 ・ 4 位粉絲