0

0
0

文字

分享

0
0
0

聽聲音(七):狼來了

Muzik Online
・2015/02/12 ・1363字 ・閱讀時間約 2 分鐘 ・SR值 452 ・五年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

作者 官大為(Wiwi)

【提醒:此篇文章是上兩篇文章的續集,請您一定要先看完上篇文章再看這篇喔!不然您可能會不懂我在寫什麼。】
前篇文章連結:
聽聲音(五):分割聲音的光譜
聽聲音(六):畢達哥拉斯的 Do Re Mi

在上篇文章,我們詳細解說了畢達哥拉斯是如何用「3:2」這個簡單的整數比,來分割一個八度成為(後來被叫做 Do-Re-Mi-Fa-Sol-La-Si 的)七個音。

不過,為什麼是七個音而已呢?我的猜想是,如果照著他的「將頻率乘上 3/2 來求得下一個音」的方法,第八個音的頻率會跟第一個音有點太接近,導致他覺得到七個音就可以了(吧)(註)。

只有七個音好無聊

但後續的音樂學家們覺得,就這七個音而已有一點太無聊,於是就想要多增加一些新的音,或者用我們一直以來的說法是:「把 x 到 2x 這段頻率再細分成更多段」。

但要怎麼做呢?就用畢先生的老方法阿:「將頻率乘上 3/2,如果超過 2x 的話就除 2」,於是大家就從畢達哥拉斯留下的最後一個音「729/512x」出發,繼續用相同的方法求出了第 8、9、10、11 和 12 個音。

兩個音樂學家的私密對話

當他們正準備把第 12 個音的頻率乘上 3/2 的時候,他們發現第 13 個音也離 2x 太近了吧,它幾乎就是 2x 了阿!

然後你就可以想像,當時音樂學家們的聚會中,一定出現了以下的對話:
音樂學家A:「好可惜,如果第 13 個音剛好等於 2x 的話該有多完美阿!這樣我們的音階就是完美地被簡單整數比 3:2 給分割了⋯⋯」
音樂學家B:「不過第 13 個音也離 2x 夠近了拉!你看看 531441/262144x = 2.02728653x,才差 0.027 個八度而已阿!不如我們的音階就 12 個音就好,就把 2x 當作第 13 個音吧,這樣不是比較簡單嗎?」
音樂學家A:「可是這樣第 12 個音跟 2x 一起彈的話不是會很難聽嗎?你聽聽看其他同樣的組合都好好的,可是就是這兩個音很難聽。(彈)」

音樂學家B:「還好拉!⋯⋯(再聽幾次)⋯⋯誒,好像真的有點難聽耶!」

音樂學家A:「⋯⋯⋯⋯」

音樂學家B:「⋯⋯⋯⋯」

音樂學家B:「靠,管他的,反正這兩個音也很少用。」

音樂學家A:「也對,反正難聽也是作曲家的問題,干我P事!害我最近想這個問題想了這麼久。誒,你上次說啤酒很好喝的地方在哪裡?」

⋯⋯⋯⋯

 

狼來了,一直到 18 世紀才走

於是這兩個一起彈會很難聽的音,就還真的就這樣被留下來了,而且還被取了一個名字:「狼音」(wolf interval)。它聽起來就像是我們在第三篇文章:調音師怎麼知道鋼琴準不準?中提過的鋼琴不準的「抖抖」聲音,我也不懂為什麼中世紀的人會覺得這個聽起來很像「狼」。

「狼音」的問題,一直到大約十八世紀初才稍微被解決,在那之前,作曲家在寫曲子的時候,都需要自行小心避開造成狼音的組合,導致他們的曲子只能寫某些調、只能用某些和弦,也不能任意轉調。

如果你硬要寫會形成狼音的曲子會怎麼樣?聽聽看以下這個小片段,我先用現代(正常)的音律演奏一次,然後用畢達哥拉斯的音律再演奏一次,聽聽看差別。

下回待續

而為什麼後來的音樂就沒有狼音的問題了呢?要發展成我們現代所用的音階系統,需要達成的突破是什麼?故事下回再繼續喔!

(Wiwi)

註:另外一說是因為當時古希臘音樂的四音音階(tetrachord)系統,導致畢達哥拉斯「不需要」那麼多音,甚至連七個音都還不到。

轉載自MUZiK ONLiNE 名家隨筆

文章難易度
Muzik Online
25 篇文章 ・ 6 位粉絲
MUZIK ONLINE是世界上第一個以古典音樂為核心素材,結合科技與社群功能的線上收聽平台。它把古典音樂化為易於接近的數位內容,史無前例地,讓專業人士、入門者、或不排斥音樂的朋友們之間,建立起對話的共通頻道。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

2
0

文字

分享

0
2
0
沒有樂器,也可以有音樂!人類與音樂的悠久故事——《傾聽地球的聲音》
商周出版_96
・2022/12/14 ・3239字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

人類的音樂比任何樂器都古老

早在我們雕刻象牙或骨頭之前許久,肯定已經使用聲音戲耍出旋律、和聲與節奏。現代人類所有族群都會唱歌、演奏樂器和舞蹈。

這種普遍性意味著我們的祖先早在發明樂器以前,已經是音樂的愛好者。如今所有已知的人類文化之中,音樂都出現在類似情境裡,比如愛情、搖籃曲、治療和舞蹈。這麼說來,人類的社會行為通常少不了音樂。

如今所有已知的人類文化之中,音樂都出現在類似情境裡,例如搖籃曲。圖/pixabay

化石證據同樣顯示,五十萬年前的人類已經擁有能發出現代口語和歌聲的舌骨。因此,在我們製造樂器之前幾十萬年,人類的喉嚨就已經能夠說或唱出語句或歌詞。

口語和音樂何者先出現,目前還無從確定。其他物種也具有感知語言和音樂所需的神經組織,顯示我們的語言和音樂能力只是原有能力的精緻化。

左右腦的劃分

人類以左腦處理口說語言(其他哺乳類或許也是在同樣的部位處理同類的聲音),其他聲音則是傳送到負責處理音樂的右腦。或許左右腦共同處理,左腦利用聲音在不同時間呈現的細微差異理解語義和語法,右腦則用音頻的差異來捕捉旋律和音色等細節。

但這個劃分並非絕對,顯示語言和音樂之間沒有明確的分隔線。語言的抑揚頓挫和音韻會啟動右腦,歌曲的語義內容卻是點亮左腦,那麼,歌曲和詩文讓我們左右腦的運作相互交織。

所有的人類文化都有這種現象,都將文字融入歌曲裡,而口說語言的意義有一部分來自語言本身的音樂性。在嬰兒時期,我們根據母親聲音的速度和音頻辨識她。成年以後,我們用音頻、拍子、力度、音質和音調傳情表意。

在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去:澳洲的歌行(song line);中東與歐洲的禱文吟誦、聖歌和詩篇;桑族(San)入神舞的「呼喊敘事」;以及全世界不同族群各異其趣的詠唱方式。

在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去。圖/pixabay

這麼說來,器樂(instrumental music)性質特殊,跟歌曲和口語有所區分。它是一種完全脫離語言的音樂。最早的製笛師也許研究出如何創造超越語言特性的音樂。在這方面,他們或許跟其他動物找到了共通性。

動物們也有音樂和語言

昆蟲、鳥類、蛙類和其他物種的聲音也許有自己的文法和句式,卻肯定不屬於人類語言的範疇。如果器樂確實讓我們感受到超越語言或先於語言的聲音,那麼這是一種矛盾的體驗。

人類對工具的使用為時不久又獨一無二,透過這樣的活動,我們超越語言,體驗到聲音的含義與細節。我們的動物親族或許仍然這樣體驗聲音,演化成為人類之前的祖先肯定也是。器樂或許帶領我們的感官回到工具和語言出現之前的體驗。

打擊樂的出現可能也早於口語或歌曲。由於鼓的材質多半是生活中常見的皮革或木頭,不耐久存、容易腐朽,考古學上的證據因此相當稀少。已知最早的鼓只有六千年歷史,出現在中國,但人類打鼓的歷史應該久遠得多。

在非洲,野生黑猩猩、倭黑猩猩和大黑猩猩都使用鼓聲做為社交信號。這些猩猩表親使用雙手、雙腳和石頭敲擊身體、地面或樹木的板根。

這意味著我們的祖先可能會擊鼓,或許用來傳達身分或領域訊息,在此同時凝聚成團結合作、節奏一致的群體。相較於其他類人猿,人類鼓聲的節拍更有規律,也更精準。有趣的是,對許多黑猩猩族群而言,用石塊敲擊樹木可說是一種儀式。

黑猩猩會選擇特定樹木,在選定的每個地點疊出石堆。牠們不但把石頭存放起來,還會將它們拋或扔向樹木,發出砰或喀嗒聲。牠們敲擊樹木時,通常一面發出洪亮的「噓喘」,一面用手腳擊打樹幹。那麼,黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。

黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。圖/pixabay

這個現象告訴我們,人類音樂的這些元素,歷史比我們的物種更悠久。

最古老的緣起仍成謎

人類音樂最古老的根源究竟從什麼時間點開始,目前還是個謎,器樂與其他藝術形態之間的關係卻比較清楚。世上已知最古老的樂器,就埋葬在已知最古老的具象雕像旁,二者都來自洞穴裡人類遺跡的最底層。

它們底下的沉積層已經看不到人類的痕跡,而後,在更深處是尼安德塔人的工具。在地球上的這個位置,器樂和具象藝術同時出現,就在解剖學意義上的現代人最早抵達歐洲冰雪大地的時刻。

樂器與具象雕刻品有個共通概念,那就是物質經過三度空間的修改,可以變成活動的物件,刺激我們的感官、心靈和情感,如今我們稱之為「藝術的體驗」。笛子與雕像的並置告訴我們,在奧瑞納文化時期,人類的創意不只展現在單一活動或功能上。工匠的技藝、音樂的創新與具象派藝術彼此連結。

最早期的人類藝術也為藝術形式之間的相關性提供佐證。已知最早的繪畫是抽象的,而非具象。這些繪畫來自七萬三千年前,掩埋在南非布隆伯斯洞窟(Blombos Cave)的沉積層裡。在那個洞穴裡,有人用赭石筆在易碎的岩石上畫出交叉陰影圖案。這個圖案所在的沉積層還有其他創意作品存在,比如貝殼珠子、骨錐、矛頭和赭石鐫刻的作品。

布隆伯斯洞窟的貝殼珠。圖/wikipedia

只是,現階段的紀錄顯示,德國南部洞穴立體藝術品製作工藝發展的速度,可能與使用顏料的具象藝術不一樣。笛子和小雕像似乎沒有經過刻意著色,它們所在的洞穴也沒有壁畫裝飾。在這個地區,要等到更後期的馬格達連文化(Magdalenian,大約這些笛子出現後再經過兩萬年),才有明顯以赭色顏料塗畫的岩石裝飾。

馬格達林洞穴壁畫。圖/wikipedia

歐洲另一個奧瑞納文化遺址、西班牙北部的埃爾卡斯蒂洞窟(El Castillo),發展軌跡卻是不同。洞穴裡的圓盤壁畫時間超過四萬年,在同一面牆壁上有個三萬七千年前的手掌圖案。不過,據我們目前所知,這個時期在這個地區並沒有立體藝術創作。

同樣的,蘇拉威西洞穴的具象壁畫也跟任何已知雕刻作品無關。這些差異透露的,是考古紀錄有欠完整,而不是人類藝術的發展歷程。目前看來,立體藝術作品(雕像與笛子)最早發展的時間和地點似乎與繪畫不同。

見證音樂的悠久歷史

這段悠久的歷史重塑我們對更近期藝術的體驗。望著舊石器時代的笛子和小雕像,我想到大英博物館、紐約大都會藝術博物館和羅浮宮的人潮。有時我們會排隊幾小時,只為了看一眼人類藝術與文化的重要時刻。但在德國鄉間這座小博物館裡,我們見識到藝術更深遠的根源。

我張開雙臂。假設我雙手之間的距離是已知人類音樂與具象藝術存在的時間,冰河期的笛子和雕刻品的位置會在我左手指尖,跟蘇拉威西的洞穴壁畫一起。各大博物館裡的主要藝術品的位置則在我右手伸直的指尖,是過去一千年來的產物。

這絕不代表過去幾百年來的藝術創作不重要,相反的,紀錄遠古人類精湛藝術的遺址和博物館既與更近期的作品相得益彰,也為人類的藝術創作尋根溯源。藝術在與每個地區的動物和環境的關係中誕生,又藉著舊石器時代人類的高超技藝與想像力向上提升。

—本文摘自《傾聽地球之聲》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
0

文字

分享

0
3
0
舞池太冷該怎麼炒熱氣氛?DJ 請下點聽不到的低頻 BASS!
Peggy Sha
・2022/12/07 ・1637字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「Despacito~Quiero respirar tu cuello despacito~」聽到這段旋律,你是不是也開始不由自主地跟著搖擺了呢?跟著音樂一起流動實在是再自然不過的事了,不過,假設你完全聽不到這些動感「音樂」,它還能發揮同樣的效果嗎?

科學家也想知道這個問題的答案,於是乎,他們把實驗室搬到舞池啦!

人會跟著聽不到的低頻音樂動次動嗎? 圖/GIPHY

超酷的實驗,就要在超酷的表演廳進行!

沒錯!最近發表在《當代生物學》(Current Biology)期刊上的研究就是這麼嗨!這份研究的第一作者是來自麥克馬斯特大學(McMaster University)的神經科學家 Daniel Cameron,他本身就是個音樂愛好者,除了會打鼓外,研究的主要方向也離不開音樂,總是在探索音樂和人類間的互動關係。

想要從事如此動感的實驗,一般的研究室可沒辦法進行,研究者們選擇的地點是麥克馬斯特大學裡面的「LIVELab」,這個地方算是個研究型表演劇院,裡面既能進行各式演出,也能同時進行各種測試和研究。

LIVELab 介紹影片。影/YouTube

劇場裡不僅有 3D 動作捕捉系統,還有可以模擬各種音樂環境的超強大 Meyer 音響系統,最重要的是,它還配備了本次研究的主角──能產生極低頻率的喇叭!普遍來說,我們耳朵能聽到的聲音頻率介在 20 Hz~20,000 Hz 之間,更高或更低都聽不見,那麼,問題來了:聽不見的聲音,還會對我們產生影響嗎?

偷偷來點低頻音,大家真的會感受得到嗎?

為了尋找答案,研究者邀請加拿大的電子音樂雙人組合「 Orphx」到 LIVELab 辦了場表演,並招募了一群實驗參與者來參加。想聽這場演出,需要比平常多一點點的準備。

首先,觀眾需要戴上運動感應頭帶,用以偵測舞蹈動作;再來,觀眾在參加前和參加後都需要填寫調查表,好衡量他們對於演出的喜愛程度、相關生理感受,並確認他們沒有聽到那些偷偷塞進去的低頻聲音。

加拿大的電子音樂組合 Orphx 在 2008 年的現場表演照片。圖/Wikipedia

在整整 45 分鐘的演出中,研究人員會悄悄在幕後控制撥放低頻聲音的喇叭 ,這些喇叭會撥放 8~37 Hz 間的聲音,每兩分鐘開關一次,結果發現,當喇叭開著、放出低音的時候,觀眾的運動量竟然增加了近 12%!

為什麼我們聽不到低音卻還是想跳舞?聲音能被「感受」嗎?

不過,為什麼這些超低聲音會讓人們更愛跳舞呢?研究者們現在還不知道確切的生理運作機制,但他們有些推測。研究者認為,低頻聲音雖然無法被聽見,也不會讓大腦中處理聲音的部分變得活躍,但是,卻能被神經系統的其他部分接收到。

Cameron 表示,我們腦中的前庭系統,也就是專門負責平衡感和空間感的感覺系統對於低頻刺激非常敏感。另一方面,觸覺也扮演了很重要的角色,我們身上的機械性受器(mechanoreceptor)同樣對於低頻的刺激很敏感,會隨著震動而移動,這也就是為什麼,當你站在很大聲的音響前方時,會感覺全身彷彿都在跟著震動。

圖/Pexels

或許,就是這些系統,讓我們能夠用不同的方式來「感受」到音樂、接收我們聽不見的低頻聲音。

如果想要完整了解背後的機制,勢必還要多辦幾場這樣的「科學音樂表演」,但在那之前,如果大家想要讓舞池嗨一些的話,低頻音催下去就對啦!

參考資料

  1. Want to fire up the dance floor? Play low-frequency bass
  2. Cameron, D. J., Dotov, D., Flaten, E., Bosnyak, D., Hove, M. J., & Trainor, L. J. (2022). Undetectable very-low frequency sound increases dancing at a live concert. Current Biology32(21), R1222-R1223.
  3. Low-Frequency Bass Encourages Dancing
  4. Inaudible, low-frequency bass makes people boogie more on the dancefloor
Peggy Sha
69 篇文章 ・ 387 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。