0

0
0

文字

分享

0
0
0

聽聲音(七):狼來了

Muzik Online
・2015/02/12 ・1363字 ・閱讀時間約 2 分鐘 ・SR值 452 ・五年級

作者 官大為(Wiwi)

【提醒:此篇文章是上兩篇文章的續集,請您一定要先看完上篇文章再看這篇喔!不然您可能會不懂我在寫什麼。】
前篇文章連結:
聽聲音(五):分割聲音的光譜
聽聲音(六):畢達哥拉斯的 Do Re Mi

在上篇文章,我們詳細解說了畢達哥拉斯是如何用「3:2」這個簡單的整數比,來分割一個八度成為(後來被叫做 Do-Re-Mi-Fa-Sol-La-Si 的)七個音。

不過,為什麼是七個音而已呢?我的猜想是,如果照著他的「將頻率乘上 3/2 來求得下一個音」的方法,第八個音的頻率會跟第一個音有點太接近,導致他覺得到七個音就可以了(吧)(註)。

只有七個音好無聊

但後續的音樂學家們覺得,就這七個音而已有一點太無聊,於是就想要多增加一些新的音,或者用我們一直以來的說法是:「把 x 到 2x 這段頻率再細分成更多段」。

但要怎麼做呢?就用畢先生的老方法阿:「將頻率乘上 3/2,如果超過 2x 的話就除 2」,於是大家就從畢達哥拉斯留下的最後一個音「729/512x」出發,繼續用相同的方法求出了第 8、9、10、11 和 12 個音。

兩個音樂學家的私密對話

當他們正準備把第 12 個音的頻率乘上 3/2 的時候,他們發現第 13 個音也離 2x 太近了吧,它幾乎就是 2x 了阿!

然後你就可以想像,當時音樂學家們的聚會中,一定出現了以下的對話:
音樂學家A:「好可惜,如果第 13 個音剛好等於 2x 的話該有多完美阿!這樣我們的音階就是完美地被簡單整數比 3:2 給分割了⋯⋯」
音樂學家B:「不過第 13 個音也離 2x 夠近了拉!你看看 531441/262144x = 2.02728653x,才差 0.027 個八度而已阿!不如我們的音階就 12 個音就好,就把 2x 當作第 13 個音吧,這樣不是比較簡單嗎?」
音樂學家A:「可是這樣第 12 個音跟 2x 一起彈的話不是會很難聽嗎?你聽聽看其他同樣的組合都好好的,可是就是這兩個音很難聽。(彈)」

音樂學家B:「還好拉!⋯⋯(再聽幾次)⋯⋯誒,好像真的有點難聽耶!」

音樂學家A:「⋯⋯⋯⋯」

音樂學家B:「⋯⋯⋯⋯」

音樂學家B:「靠,管他的,反正這兩個音也很少用。」

音樂學家A:「也對,反正難聽也是作曲家的問題,干我P事!害我最近想這個問題想了這麼久。誒,你上次說啤酒很好喝的地方在哪裡?」

⋯⋯⋯⋯

 

狼來了,一直到 18 世紀才走

於是這兩個一起彈會很難聽的音,就還真的就這樣被留下來了,而且還被取了一個名字:「狼音」(wolf interval)。它聽起來就像是我們在第三篇文章:調音師怎麼知道鋼琴準不準?中提過的鋼琴不準的「抖抖」聲音,我也不懂為什麼中世紀的人會覺得這個聽起來很像「狼」。

「狼音」的問題,一直到大約十八世紀初才稍微被解決,在那之前,作曲家在寫曲子的時候,都需要自行小心避開造成狼音的組合,導致他們的曲子只能寫某些調、只能用某些和弦,也不能任意轉調。

如果你硬要寫會形成狼音的曲子會怎麼樣?聽聽看以下這個小片段,我先用現代(正常)的音律演奏一次,然後用畢達哥拉斯的音律再演奏一次,聽聽看差別。

下回待續

而為什麼後來的音樂就沒有狼音的問題了呢?要發展成我們現代所用的音階系統,需要達成的突破是什麼?故事下回再繼續喔!

(Wiwi)

註:另外一說是因為當時古希臘音樂的四音音階(tetrachord)系統,導致畢達哥拉斯「不需要」那麼多音,甚至連七個音都還不到。

轉載自MUZiK ONLiNE 名家隨筆

文章難易度
Muzik Online
25 篇文章 ・ 4 位粉絲
MUZIK ONLINE是世界上第一個以古典音樂為核心素材,結合科技與社群功能的線上收聽平台。它把古典音樂化為易於接近的數位內容,史無前例地,讓專業人士、入門者、或不排斥音樂的朋友們之間,建立起對話的共通頻道。


2

9
0

文字

分享

2
9
0

地球在 20 年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 375 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策