Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

【Gene思書齋】鳥類的命運就是人類的命運

Gene Ng_96
・2015/01/14 ・2425字 ・閱讀時間約 5 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

0010644417

 

9781615190911

 

由於我是用鳥來做實驗,無可避免的,就會被問到和禽流感等等有關的問題。其實我自己也不是專家。很多問題,還是去請教專家比較好,例如來讀這本《鳥的命運就是人的命運:如何從鳥類預知人類健康與自然生態受到的威脅》Their Fate Is Our Fate: How Birds Foretell Threats to Our Health and Our World)。

《鳥的命運就是人的命運》作者彼得.杜赫提(Peter Doherty),是諾貝爾獎得主,他是澳洲墨爾本大學微生物及免疫學系教授,兼美國田納西州孟斐斯市聖猶達兒童研究醫院的生物醫學研究譚莫講座(Michael F. Tamer Chair)。他在免疫學上的先驅研究讓他與辛克納傑(Rolf M. Zinkernagel)共同獲得了1996年的諾貝爾生理或醫學獎;次年,他被選為澳大利亞年度風雲人物(Australian of the Year),並獲頒澳大利亞最高榮譽勳章(Companion of the Order of Australia)。

杜赫提榮獲諾貝爾獎的工作是他發現T細胞如何利用主要組織相容性複合體(major histocompatibility complex,MHC)來辨識抗原。他和分享諾貝爾獎的Rolf Zinkernagel發現,如果T細胞要認出受病毒感染的細胞,需要利用T細胞受器來辨認出兩種分子,除了病毒的抗原外,還要有MHC。原本MHC之前已知的功能和器官移植的組織相容有關,他們的發現讓我們瞭解到,MHC也和對抗病毒有關。

晚年愛上賞鳥的杜赫提在《鳥的命運就是人的命運》指出,鳥就像哨兵,是人類健康與地球生態的預警系統,就像過去礦工會帶著金絲雀一起進到礦坑工作,因為金絲雀對有毒氣體非常敏感,周遭空氣稍不對勁便會鳴叫甚至死亡。

-----廣告,請繼續往下閱讀-----

牠們會對空氣、海洋、森林及草原進行取樣,如果自然環境遭到危害,頭一個明顯受到影響的就是鳥類的健康與數量。在這本討論人、鳥、病毒與環境的疾病生態學的書中,專業科學家杜赫提倡導公民科學的方法來守護鳥類和人類的健康。

杜赫提在《鳥的命運就是人的命運》的前幾章介紹了基礎的鳥類生物學,然後探討各種對鳥類健康造成重大影響的病毒,例如西尼羅病毒和禽流感病毒等等。除了病毒,《鳥的命運就是人的命運》的後半部還介紹了更複雜的鳥類病原,例如鸚鵡熱、瘧疾,甚至癌症。最後幾章,杜赫提探討了人類如何影響鳥類的族群和健康。對鳥類而言,人類可能是更可怕的病原,因為人類不僅會製造汙染,還會濫捕濫獵。

可是我們人類和鳥類只能坐以待斃嗎?《鳥的命運就是人的命運》最後讓我們瞭解到公民科學活動的意義,利用群眾的力量監控鳥類族群的一舉一動,以期及時得到警訊。國外最著名的公民科學活動就是eBird。在此計畫中,成千上萬業餘賞鳥者現在成為了該實驗室所謂的「生物感測者」(biological sensors),記錄並報告他們所見鳥類的地點、時間、數目和種類,將其所見聞轉換為寶貴的科學資料。

雖然每個賞鳥者觀察到的都是微量資訊,但是聚沙成塔,眾包已為科學家打造出的全球鳥類種群即時觀測圖。鳥類種群的相關資訊能夠幫助科學家認識大自然其他方面的變化,是整體生物多樣性健康程度的指標。不過鳥類計數相當困難,因為記錄特定區域內鳥的種類和數量,無法利用感測器而只能靠人力進行。

-----廣告,請繼續往下閱讀-----

eBird於2002年開始蒐集全球的資料,雖然在美國也有其他賞鳥計數活動,能夠號召全美各地的許多人在同一天賞鳥,而且也有一定的科學價值,但還是和eBird有所區別,因為它們無法提供全年度的完整資料。eBird每天的鳥類活動觀察已經產生了可觀的資料,eBird已經積累了1.41億份報告,而且還在以每年40%的速度成長。截至今年五月,eBird破紀錄地從169個國家收集了560萬份新資料。

為了儘可能解決業餘賞鳥者判斷準確度的問題,康乃爾鳥類學實驗室僱用了頂級觀鳥達人,讓他們週遊列國,給予業餘賞鳥者方法上的指導。還有500名專家志工為資料的精確性把關,約2%的資料會被過濾掉。珍稀鳥類的目擊報告還會得到特殊審查。

台灣的特有生物研究保育中心幾年前也開始公民科學的利用,特生中心的鳥類研究團隊,這幾年有重要方向有「BBS TAIWAN台灣繁殖鳥類大調查」、「MAPS TAIWAN台灣鳥類繁殖力與生產力監測」、「AIS STOP外來鳥種監測網」等等,希望採用公民科學的機制,把台灣鳥類多樣性的監測系統組織架構起來。

以鳥類觀測為例,目前全國約有一千名公民科學家,正在推動「台灣繁殖鳥類大調查」(Taiwan Breeding Bird Survey ,簡稱BBS)的,以台灣本島的常見繁殖鳥類(包括留鳥與夏候鳥)為對象,利用定時、定量、定點的標準化調查方法,來長期記錄掌握繁殖鳥類分布及數量狀況,可以對整體生態環境的變動取得明確的側寫。除了學術研究的價值,所獲得的資訊也可以用作保育決策的重要參考,或用以評斷生物多樣性保育政策的效能與進度。

-----廣告,請繼續往下閱讀-----

現在愈來愈多科學家發現野生動物和人類公共衛生之間攸關存亡的重大關係,除了《鳥的命運就是人的命運》,另一本不可多得的好書《共病時代:醫師、獸醫師、生態學家如何合力對抗新世代的健康難題》Zoobiquity: The Astonishing Connection Between Human and Animal Health)更廣泛地探討了對野生動物的研究,如何能夠解決一些人類健康的重要問題(請參見〈人獸同源的共病時代〉)。要確保人類在地球上的繁衍,甚至存亡,我們不能再漠視野生動物的福祉,現在肆虐非洲的伊波拉病毒,就是從野生的大猿傳染到人類身上的!

人類就算再文明,也還是大自然的一份子,不可能和大自然隔絕,大自然的一舉一動,仍然攸關我們這個物種的興盛存亡!

本文原刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (2)
顯微觀點_96
・2025/03/06 ・2645字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學遠見的現實基礎

儘管 GFP 基因定序研究在 1992 年受到查菲和錢永健重視,普拉修卻已經決定轉換跑道,停止在伍茲霍爾海洋研究所的苦悶掙扎。他向所內評審委員會提出中止審核,放棄晉升,並將在一年內離職。

延伸閱讀:缺席的普拉修,2008年諾貝爾化學獎第4位得主(1)

當普拉修把查菲和錢永健要求的 GFP 基因樣本送到,他一面感到終結的哀傷,一面認知到「不問報酬地把 GFP 基因交棒給其他人,是當下最合理的選擇。」尤其是像自己這樣使用公共經費進行研究的學者。

除了對社會的責任感,普拉修也意識到學術現實面,研究資源充沛的成功學者,更有機會實現GFP的潛力。在知名大學任教的查菲和錢永健已在各自領域中奠定名聲,更容易申請經費。而且他們可以用既有經費支應 GFP 轉殖實驗的開銷,不需要特意申請高門檻的 GFP 獨立經費,更不會落到像普拉修一樣,經費耗盡還慘澹經營 GFP 基因選殖一整年。

-----廣告,請繼續往下閱讀-----

此外,查菲和錢永健還有研究生和博士後研究員的充沛學術勞動力,而普拉修則總是獨力進行所有研究勞動。孤立、勞累而缺乏成就感,普拉修沒能成功以綠色螢光照亮細胞生理,也無法驅散他自己周遭的職業陰霾。

查菲能在 1992 年重新連繫上普拉修,是因為查菲向研究生尤斯克亨(Ghia Euskirchen)感嘆,普拉修從未回報 GFP 的基因選殖成果,或許是個難以成功的任務。

查菲與完成第一個線蟲螢光基因轉殖的四人團隊 1
查菲回憶錄中列出為 GFP 基因轉殖技術做出巨大貢獻的四人團隊,左上為普拉修,右上為尤斯克亨,下方兩位是接替尤斯克亨進行 GFP 轉殖實驗的技術人員。Courtesy of M. Chalfie

尤斯克亨當下便和查菲一起打開實驗室電腦,用剛安裝的線上論文資料庫 Medline 搜尋相關文獻。他們不可置信地在搜尋結果第一位看見普拉修的 GFP 基因選殖論文,接著飛奔到圖書館尋找實體期刊,在上面找到普拉修的電話,重新建立聯繫。

在查菲的指導下,尤斯克亨只花一個月就完成了大腸桿菌的 GFP 轉殖,成為第一個螢光轉殖生物的拍攝者。接著,查菲團隊順利地讓線蟲的神經細胞表現綠色螢光,證明 GFP 可以在不同生物體內獨立發光,無須其他來自水母的分子。微觀生物學的未來一片光明。

-----廣告,請繼續往下閱讀-----
199210.14 第一張螢光大腸桿菌照片
1992 年 10 月 14 日,尤斯克亨拍下第一張螢光大腸桿菌照片。當時查菲還沒準備好觀察成功轉殖的螢光樣本,尤斯克亨只好到以前待過的實驗室借用螢光顯微鏡。Courtesy of M. Chalfie

錢永健則是透過與同儕的討論,知道生命科學仍然缺乏合適的螢光標記蛋白,進而在 UCSD(加州大學聖地牙哥分校)新安裝的 Medline 資料庫上搜尋「綠色螢光蛋白」,驚訝地發現普拉修的論文摘要。和查菲一樣,錢永健衝進圖書館影印實體論文,並馬上連繫普拉修,比查菲更早確保 GFP 基因序列的樣本。

查菲團隊轉殖 GFP 的同時,錢永健團隊建構出多種 GFP 變異體,人類開始以不同螢光蛋白觀察細胞內部運作。兩個團隊的成果啟動了學術界和生技產業洪流般的關注與需求,錢永健團隊甚至設立了自動化的樣本供應網頁,只要填寫線上申請書,錢永健實驗室就會無償將螢光蛋白基因載體寄送到府。

值得一份晚餐,或是更多

接下來的十多年,GFP 相關蛋白照亮細胞內的奧秘,成為「生化研究的領航星」,並帶領研發者邁向諾貝爾化學獎。而捨棄 GFP 研究的普拉修,則像是失去指引一般,不僅沒能獲獎,更經歷了顛簸困頓的人生苦旅。

離開伍茲霍爾海洋研究所,普拉修在美國農業部轄下獲得分子生物學技師職位。在政府機構經歷職場摩擦、調職搬遷,使緊繃難熬的氣氛瀰漫普拉修全家之後,他前往亨茨維應徵 NASA 承包商的工程師職缺。在火箭城研發太空診斷器是讓普拉修覺得相對有趣的任務,經費短缺卻再次扼殺了他的期待。

-----廣告,請繼續往下閱讀-----

NASA 在 2006 年裁減生命科學研究經費,普拉修因此被裁員,轉而成為接駁車司機。他在駕駛座上友善健談,意外發現自己其實喜歡工作中和陌生人互動的部分。但是 8.5 美元的時薪讓他入不敷出,連他和查菲共享的 GFP 專利金都在幾年內消耗殆盡。

1994 F Science Gfpcover
1994 年 2 月 11 日發行的《科學》採用查菲團隊的 GFP 線蟲做為期刊封面,象徵螢光蛋白普照分子生物學的光明時代開端。此圖片也收錄在查菲的 GFP 回憶錄《點亮生命》(Lightung Up Life)中。相反的是,普拉修的生涯似乎始終不被綠色螢光照耀。Courtesy of M. Chalfie

儘管事業成果的對比相當符合美國媒體對「不公平」題材的嗜好,普拉修不曾在訪談間表現對查菲和錢永健的嫉妒。

2008 年 10 月 8 號早餐之前,普拉修聽到三位科學家因為 GFP 獲得諾貝爾化學獎,他若無其事地換上灰色制服前往公司開車。不過,上班前他打了通電話到當地電台,糾正他們對錢永健姓氏的發音。

查菲和錢永健在諾貝爾獎致詞與回憶錄中,不約而同地感謝普拉修的研究貢獻,錢永健更經常提供普拉修回到學術領域的工作機會。不願接受研究職位作為恩惠、從斯德哥爾摩回到亨茨維開接駁車的普拉修則笑說「如果他們來到亨茨維,該請我吃頓晚餐。」

-----廣告,請繼續往下閱讀-----

「他們總是有提到我的功勞,而且他們有傑出的科學事業,完成重大貢獻之後,繼續發展他們傑出的科學事業。」普拉修一向對媒體表示,查菲和錢永健是更值得諾貝爾獎的人選,而非中輟離開科學領域的自己。

Imagej=1.53t
發源於 GFP,透過多種螢光蛋白混雜表現而成的 brainbow 技術,是研究生物修復傷口、更新組織時的重要工具。作者: Marco de Leon from Taiwan 顯微攝影競賽

但是,普拉修並非真正「離開」科學領域。他結束 GFP 研究後,不論在政府機構或私人企業,依然從事超過十年的科學相關工作,並作出實際貢獻。相對於逃離科學,他其實是被不理解 GFP 潛力的終身職審查委員會給排除,被迫離開「高賭注的尖端學術領域」(high-stakes academic science)。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
25 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
諾貝爾得獎「助攻王」 :秀麗隱桿線蟲
顯微觀點_96
・2025/02/25 ・2852字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學界的重大盛事-諾貝爾獎,已在 10 月揭曉。今(2024)年生醫獎頒發給維克托.安布羅斯(Victor Ambros)和加里.魯夫昆(Gary Ruvkun),他們以「發現 microRNA 及其在轉錄後基因調控中的作用」獲肯定得到桂冠。而這項重大發現的背後,一種叫做「秀麗隱桿線蟲」(C. elegans)的小蟲子居功厥偉。

生醫獎背後大功臣

安布羅斯和魯夫昆對於基因如何受到調控,如何因活化時間不同而確保各類型細胞在正確時間點發育的問題很感興趣。因此他們研究因基因活化出現問題的兩種線蟲突變株:lin-4 和 lin-14,以瞭解當中的機制。

一開始,安布羅斯先發現 lin-4 基因似乎是 lin-14 基因的負調節因子,但 lin-14 的活性是怎麼被阻斷的,仍然是個謎。因此他系統性地找尋 lin-4 在基因體中的位置與基因序列,也因此意外發現 lin-4 基因只會產生一種異常短、不足以合成蛋白質的核醣核酸分子。

-----廣告,請繼續往下閱讀-----

同一時間,魯夫昆在麻州總醫院和哈佛醫學院新成立的實驗室研究 lin-14 基因的調控。魯夫昆發現 lin-4 抑制的並不是 lin-14 的產生,而是抑制 lin-14 基因產生蛋白質,且發生在基因表現過程的後期。實驗也顯示要抑制 lin-4,必須要有 lin-14 訊息核醣核酸(mRNA)中的一個片段。

安布羅斯和魯夫昆比較了各自的實驗成果,找到突破性的發現:lin-4 部分序列與 lin-14 訊息核醣核酸的關鍵片段中的序列互補。他們進一步實驗,顯示 lin-4 微型核醣核酸(microRNA)透過與 lin-14 訊息核醣核酸中的互補序列結合,來抑制 lin-14 轉譯,進而阻斷 lin-14 蛋白質的產生,也因此揭開 microRNA 介導的基因調控新原理。

這項結果被發表在 1993 年的《細胞》期刊的兩篇文章上。但一開始這樣的基因調控機制被認為是秀麗隱桿線蟲所特有,而不受重視。直到 2000 年,魯夫昆的研究團隊發現了另一種由 let-7基因編碼的 microRNA,科學界的態度才發生變化;因為 let-7 基因高度保存在整個動物界中。

接下來的幾年裡,數百種不同的 microRNA 被鑑定出來,微型核醣核酸的基因調控在多細胞生物中普遍存在;而基因調控若失常,則可能導致糖尿病、癌症或自體免疫疾病。

-----廣告,請繼續往下閱讀-----

這不是秀麗隱桿線蟲第一次「助攻得獎」。

(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。  安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。
(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。 安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。圖/諾貝爾生醫獎新聞稿

成為助攻王的關鍵

2002 年西德尼.布瑞納(Sydney Brenner)、約翰.蘇爾斯頓(John Sulston)和羅伯特.霍維茨(Robert Horvitz)便是從秀麗隱桿線蟲的研究「發現器官發育和計畫性細胞死亡的遺傳調控機理」,進而獲得該年諾貝爾生醫獎。值得一提的是,今年的兩位得主都曾是霍維茨實驗室的博士後研究員。

除此之外,2006 年諾貝爾生理醫學獎也頒給研究線蟲的美國科學家安德魯.法厄(Andrew Zachary Fire)和 克雷格.梅洛(Craig Cameron Mello),以表彰他們「發現 RNA 干擾—雙鏈 RNA 引發的沉默現象」。甚至馬丁.查菲(Martin Chalfie)也利用秀麗隱桿線蟲的觸感接受器神經元「發現並改造綠色螢光蛋白(GFP)」獲得 2008 年諾貝爾化學獎。

秀麗隱桿線蟲為何能成為諾貝爾的「助攻王」呢?布瑞納曾在他的論文中提到:「線蟲適合做基因研究,並且其神經系統可以被精準確定。」他在 1963 年提出以秀麗隱桿線蟲作為模式生物,並於 1974 年發表其在發育生物學和神經科學的成果。

-----廣告,請繼續往下閱讀-----

秀麗隱桿線蟲是第一種完成全基因組定序的多細胞生物。加上體積小、成蟲約長1公釐,以及透明且易於獲取的遺傳物質,使其成為絕佳的模式生物。

其在室溫下大約三天可以從卵生長為可受精的成蟲,在實驗室中以大腸桿菌為食,易於大量培養。並且解凍之後仍能存活,因此適合長時間儲存。加上每隻成蟲可產生約 300 隻後代,適合作遺傳學研究。

易於觀察也是秀麗隱桿線蟲作為絕佳模式生物的關鍵因素。由於細胞譜系固定,研究人員可以使用微分干涉顯微鏡(DIC)觀察每一個細胞的發展,甚至在在螢光蛋白出現之前,就有從受精卵到成體完整細胞譜系的描述。

在線蟲研究的多個工作步驟中,立體、複式或共軛焦顯微鏡都是常見的工具,以符合不同實驗要求。且隨著顯微技術的發展,秀麗隱桿線蟲在發育生物學中的應用和研究也更加多元。

-----廣告,請繼續往下閱讀-----

隨技術發展 研究面向更多元

在挑選合適的線蟲並準備進行遺傳或生化分析的「採蟲」階段,通常會使用末端黏有睫毛的木棍,在立體顯微鏡下關、挑選。然後使用倒立顯微鏡以顯微注射對線蟲性腺進行基因改造。

螢光蛋白(FP)是在線蟲中進行分子和細胞行為研究的核心工具,螢光顯微技術廣泛用於線蟲研究,例如 GFP 及其改進版本(如mScarlet和mCherry)常用於標記和追蹤蛋白質的動態過程。

螢光蛋白也可使用於研究線蟲的染色體外陣列表現或穩定整合到基因組中。現在則有許多研究者使用 CRISPR(基因編輯)技術,將螢光標記穩定地整合到基因組中,這樣可以精確追蹤特定蛋白在細胞內的表現位置和強度。

層光顯微術(Lightsheet microscopy)則可以在不壓縮樣本的情況下,提供更高的空間和時間解析度,特別適合長期追踪線蟲胚胎發育過程。

-----廣告,請繼續往下閱讀-----

除此之外,因為秀麗隱桿線蟲是截至 2019 年唯一一個完成連接體(connectome,神經元連接)測定的生物體,因此一直以來也常被作為神經科學研究的模式生物。

研究者可利用螢光蛋白(如 GCaMP)來追蹤鈣離子濃度的變化,當鈣離子濃度上升時會發出更強的螢光,再透過螢光強度來分析神經系統在睡眠、運動等各種行為時的活動模式。或是進一步利用轉盤式共軛焦顯微鏡、雙光子顯微鏡,抑或結合更強大的影像分析工具,對神經元活動成像並藉此解讀不同行為背後的神經迴路機制

作為模式生物,秀麗隱桿線蟲因為基因組簡單、細胞譜系固定且神經結構已知,為揭示基因調控、細胞發育、神經行為等生物學問題提供了清晰的研究途徑,在生物學研究中佔有重要地位。

儘管已是諾貝爾獎「助攻王」,相信隨著顯微和基因編輯技術的快速發展,秀麗隱桿線蟲仍能在探索人類疾病模型、藥物篩選及再生醫學等應用領域,引領研究新方向。

-----廣告,請繼續往下閱讀-----

另感謝台灣科技媒體中心(SMC)舉辦諾貝爾獎解析記者會

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
25 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2404 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。