0

0
0

文字

分享

0
0
0

歐南天文台HARPS計畫發現50顆新系外行星

臺北天文館_96
・2011/09/13 ・1673字 ・閱讀時間約 3 分鐘 ・SR值 529 ・七年級

天文學家利用歐南天文台(ESO)系外行星搜尋計畫HARPS發現了50顆新的系外行星,其中16顆為超級地球(super-Earth,質量在1~10倍地球質量的系外行星),這其中又有1顆位在其母星的適居區邊界上。從所有HARPS發現的系外行星中,這些天文學家統計出:約有40%的類太陽恆星,應該擁有至少一顆質量小於土星的行星。

HARPS計畫是使用ESO位在智利的La Silla觀測站3.6米望遠鏡進行觀測。由於此處觀測條件非常好,因此頗多斬獲。HARPS計畫總共執行了8年之久,專門以徑向速度法(radial velocity technique)在類似太陽的恆星周圍尋找系外行星,迄今已發現150多顆新行星,其中約有2/3HARPS已知系外行星的質量低於海王星(約17倍地球質量)。徑向速度法是利用觀測恆星光譜譜線,若恆星周圍有行星,則受行星公轉及其重力影響,會讓母星的位置產生擺動,因而使恆星光譜譜線發生週期性紅位移與藍位移的都卜勒效應(Doppler effect)。

HARPS計畫主持人、瑞士日內瓦大學(University of Genev)Michel Mayor表示:這是首度一口氣公布這麼多超級地球的發現,另外還有許多類恆星太陽周圍發現海王星級的系外行星;更甚者,是這些成果顯示尋得系外行星的速度不斷在加快中。Mayor同時是在1995年發現第一顆系外行星的天文學家。

HARPS計畫共監測376顆類太陽恆星,從觀測結果,這些天文學家估計類太陽恆星擁有低質量行星的比例很高,其中約有40%的類太陽恆星擁有至少一顆質量小於土星的行星,而絕大部分質量相當於或小於海王星的行星則出現在多重行星系統中。

在更新軟硬體設施後,HARPS的穩定性和靈敏性都提高很多,因此積極投入可提供生命生存的岩質行星搜尋工作,故特地挑選10顆鄰近的類太陽恆星進行監測;HARPS以前就曾觀測過這10顆類太陽恆星,故相當清楚這些恆星適合提供作為極精密的徑向速度測量。經過2年的辛勤工作後,天文學家在這些恆星周圍發現5顆新的行星,而且質量在5倍地球質量以下。對天文學家而言,這些超級地球非常適合未來的太空望遠鏡觀測,以尋找這些行星大氣中是否有生命生存的訊號,例如氧等。

A team of astronomers has shown that the newly discovered exoplanet HD 85512 b lies at the edge of the habitable zone of its star, where liquid water oceans could potentially exist if the atmosphere of the planet has sufficient cloud cover. This diagram shows the distances of the planets in the Solar System (upper row) in the new HD 85512 system (middle) and in the Gliese 581 system (lower row), from their respective stars (left). The habitable zone is indicated as the blue area. Based on an original diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO其中一顆近期公布的新行星HD 85512 b的質量僅約為3.6倍地球質量,而且公轉軌道就剛好位在母星適居區的邊緣;這是以徑向速度法所發現的所有位在適居區的系外行星中,質量最小的。HD 85512位在船帆座,距離僅35光年。適居區是指恆星周圍水剛好能以液態存在的狹窄帶狀區域;水對地球生命生存而言是最重要的基礎物質,因此天文學家相當重視適居區內的行星狀態。

新HARPS計畫的徑向速度靈敏度,可達每小時4公里以下(比一般人散步的速度還慢),意味著它的搜尋能力可偵測質量低於2倍地球質量的系外行星。所以HD 85512 b離HARPS的極限還遠得很,HARPS在類太陽恆星適居區內發現更多超級地球的機率極高,發現其他質量更小的行星的機會也愈來愈大。除了HD 85512 b之外,HARPS之前曾在2007年發現另一顆位在適居區內的超級地球Gliese 581 d,但也同時證明此系統中可能位在適居區內的另一顆系外行星Gliese 581 g其實不存在。

為了達成早日找到另一顆地球的心願,天文學家們打算在加納利群島(Canary Islands)伽利略國家望遠鏡(Telescopio Nazionale Galileo)上擺設一套和HARPS一樣的設備,另預計於2016年在ESO超大望遠鏡(Very Large Telescope)上安裝更新、更靈敏的ESPRESSO系外行星搜尋設備(Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations的縮寫),以便南天和北天能同步展開搜索。此外,未來的歐洲極大望遠鏡(European Extremely Large Telescope,E-ELT)也會安裝CODEX設備,使徑向速度搜尋系外行星的技術能推展到更高層級。

目前已知的系外行星總數逼近600大關;不過除了徑向速度法外,還有凌日法等,尚有至少1200顆系外行星候選者等待確定中。Mayor表示:預計在未來10~20年內,必定就可在太陽附近的恆星中搜尋到可能適合居住的系外行星;在此之前,天文學家們得用盡一切辦法,先列出一張未來這些先進儀器優先觀察的基本名單,這樣才能增加找到另一顆地球的速度和機會。

資料來源:Fifty New Exoplanets Discovered by HARPS

轉載自台北天文館之網路天文網網站

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 375 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策