Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

如何使用樂高測量普朗克常數?

活躍星系核_96
・2014/12/17 ・1861字 ・閱讀時間約 3 分鐘 ・SR值 556 ・八年級

lego-watt-balance-4

文 / WaveRiderZETA(某個尚未畢業的爆炎單身菸酒生,不菸不酒,倒是3C的癮頭比較嚴重。)

如果你想要找個完美的禮物送給近乎擁有一切物理學家,何不考慮給他套樂高來測量宇宙的基本常數之一:普朗克常數呢?

普朗克常數是科學中最重要的數字之一。它描述了在被稱為普朗克─愛因斯坦關係的方程的電磁波能量和頻率之間的關係:E=hν。其中,E是能量,ν是頻率和h是普朗克常數。

自1990以來的,普朗克常數因為與其能量單位的關聯性,故成為具有歷史象徵性的一個能量常量單位─但,它不曾被定義與連結到任何一種量測系統校準與標準定義的單位聯想之上。

現在這個情況即將改變。普朗克常數在現在越趨被「設定」的重要,來自於物理學家正試圖改變質量的定義─物理學家們希望它(質量)取決於普朗克常數,而不是依賴一塊藏在巴黎保管庫裡頭的在金屬塊狀體(現在放在巴黎保管庫內的國際千克原器,是一顆人造鉑銥合金塊)。

-----廣告,請繼續往下閱讀-----

正因為此,所以科學家必須要收集大量基於普朗克常數的質量數據;或者反過來,從已知質量逆推得到普朗克常數相關的數值。這也就顯得見怪不怪了─而今日,位於馬里蘭州蓋瑟斯堡的國家標準與技術研究所裡,里昂周(音譯)和幾個快樂的夥伴們,提供並解釋了個好的解決方案:用樂高製作一套製作一套實驗儀器來辦到這個任務。

多年來,物理學家和標準與幾束研究所評估了許多不同量測的方式;最後決定使用一台被人們稱為「瓦特天平器」的機器來進行試驗。

Watt balance

這設備原理上相當簡單。在科學家的點子中,儀器將以質量上所造成的力─物體下墜的重力與由載流線圈所產生的磁場所施予的力達成兩者平衡來加以測試。質量可以通過機械動力(線圈的磁力)進行對照比較─而這樣可以轉換出功率與瓦數,所以,機器就這樣被命名為瓦特天平器,而且兩者可以輕易地被轉換測量而得。

覺得這樣敘述很複雜嗎?那從測量數據的轉換觀點來看吧。這實驗涉及量測如同原理一樣簡單:透過電壓、電流流經線圈的測量(你需要安培與伏特計,不知道是啥去五金行或者電子材料行買吧!)與g,重力加速度的精確數值即可。其中,如果要取得詳盡的重力加速度數值,因為在地球表面上此數字和重力常數息息相關,所以問題很好解決:透過美國國家海洋與大氣管理局網站,簡單的輸入地點,就可以輕易的獲得來自全世界各地的數據。

-----廣告,請繼續往下閱讀-----

接下來是個簡單的數學轉換問題了。既然重力施予物體下落產生下拉的力,天平的另一端要以線圈所產生的機械力─擁有SI單位的電功率,也是機械力數據抗衡,那麼兩者可以畫上等號。「透過常規SI電功率轉換出的機械動力對比,就可以求出h。」於是周和快樂的夥伴們得出了這樣的結論。

那麼,有了原理與方式,該是建造儀器的時刻了。周與快樂的夥伴們表示,這台「瓦特天平器/瓦特平衡儀」所需要的零件幾乎大部分可以從樂高的網站「Pick-a-Brick」(選塊磚塊?)中直接選購;而針對比較特殊的專業組建,周他們也同時提供了網購地取得清單。 最近接觸了一款任天堂上面的遊戲《 FRIV 》,深深覺得遊戲能做到這種程度已經不是厲害可以形容了,決定為文好好談談這款遊戲精巧在哪裡。

cxvxfvf

要花多少錢?看完圖片與列表之後,你一定會想問這個問題。周與快樂的夥伴們提供了一套基本的套件價格試算:大約總成本可低於634美金─最昂貴的組件是300美金的數據採集器和90美金的模擬輸出器。這兩個都可以透過單一功能性的套件進行替換,成本大約189美金。一來一往,節省200美金絕對讓你能夠負擔得起。

「我們希望鼓勵眾多的科學愛好友打造瓦特平衡器,以從事有趣的科學測量。」周的團隊說。這是他們最發自內心的感想了。隨著年末假日大採購的時刻即將來臨;還在傷腦筋找不到禮物送給他人嗎?瓦特平衡套件將會是送給號稱「擁有一切」的物理學家最佳的伴手禮,絕對沒錯!

-----廣告,請繼續往下閱讀-----

備註:

  • 普朗克常數=6.62606957×10-34m2 kg/s。這是一個是一個物理常數,用以描述量子大小。
  • 馬克斯‧普朗克在1900年研究物體熱輻射的規律時發現:電磁波的發射與吸收必須假設為不連續的狀態且以「份」的方式進行,才能和試驗結果相符。在計算中, 這樣的一份能量被稱作「量子」,每一份能量子等於普朗克常數乘以輻無線電磁波的頻率。這關係稱為普朗克關係,用方程式表示普朗克關係式。
  • 本文不會完全按照內文結構進行翻譯,因為翻成中文很多地方語序不順暢無法形成正常的中文文章,請各位見諒。

資料來源:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
和百年公斤原器說再見!七大國際單位制 520 起換定義啦!
valerie hung
・2017/01/09 ・2921字 ・閱讀時間約 6 分鐘 ・SR值 520 ・七年級

  • 2018.11.15 編按:國際度量衡大會將在明天 (2018.11.16) 拍板定案最新的「一公斤」定義,也就是說,參考的標準將從實體的「鉑銥公斤原器」改為基於更加精準的「普朗克常數」,大會決議後,新的定義將在 2019.05.20 正式生效。究竟國際通用百年的「公斤」定義為何要改變、要如何改變,讓我們一起來了解吧!

未來,一公斤將可能不再是我們熟知的一公斤,一公尺也不再是一公尺,這並不是在暗示你的身高體重又隨著年歲的變化,而是我們的七大國際單位制又有機會更新啦!這對整個科學界來說,可能是比諾貝爾獎更激動的大事件啊!

科學界即將在 2018 年更新測量單位,但放心,你的身高體重或腰圍都不會突然改變。圖片來源:Maxpixel
科學界即將在 2018 年更新測量單位,但放心,你的身高體重或腰圍都不會突然改變。圖片來源:Maxpixel

雖然 iPhone 幾乎每年推出新版本,微軟也在三十多年之間從 windows 1 一路更新到了 windows 10,不過軟硬體規格不合,勉強能靠著轉接頭、發布更新檔湊合著用,但度量衡這種涉及全球各行各業的標準,不能說改就能改的,每次要更新都得從長計議。

原本科學家將質量、長度、時間、電流、溫度、物質量、發光強度,這七個物理現象的單位定義為「公斤(kg)、公尺(m)、秒(s)、安培(A)、克耳文(K)、莫耳(mol)和燭光(cd)」而根據國際度量衡委員會(CIPM)提出一份新草案,將除去國際單位制中科學家所假設的數值,全部改由自然界的基礎常數來訂定,一但通過後,期盼讓整個世界的測量系統都將變得更加精確。

有關全球各種單位與國際單位制的演變由來,可以參考泛科學的《科學大爆炸》:

-----廣告,請繼續往下閱讀-----

我們原本用的單位從哪裡來?

國際單位制(法文 Système International d’Unités,簡稱 SI)可說是全世界測量系統的基礎,此制度最早源自於 1799 年法國大革命時期科學家所發展的「公制」,經過 1960 年第十一屆國際度量衡大會修改調整後,推薦給全球使用,再經過一次次更新,成為我們現在的國際單位制。

目前七大國際單位制當中,有六個單位是由沒有實體的自然現象所定義,只有一個單位可以用實際物體來表示,那就是「公斤」。(不過在 1960 年以前,公尺也有一根實體棍子來代表喔!)

一公斤到底是什麼呢?一般人可能會直覺回答:「1000 公克?」,但實際上能堂堂正正喊出「我就是童叟無欺的一公斤」的最高權威,是一塊放在法國巴黎近郊的國際標準局(BIPM)保險箱的標準砝碼「國際公斤原器(International Prototype of the Kilogram,簡稱 IPK)」。

IPK 是由 90% 鉑(platinum)及 10% 銥(iridium)打造,大小大概如高爾夫球的鉑合金直立圓柱體,平時放在真空封存的三層玻璃罩內。全球還有許多 IPK 的複製品,作為各國自己校正單位的標準,例如台灣在 1995 年向 BIPM 購買的編號第 78 號「鉑銥公斤原器」,保存於在新竹工研院的「國家度量衡標準實驗室」中,每十年送回 BIPM 追溯一次。還有另一件可以提到的原器複製品是自日治時期留下,現在收藏在高雄科學工藝博物館

-----廣告,請繼續往下閱讀-----
國際公斤原器的電腦示意圖。圖/由en:User:Greg L - Originally uploaded to English Wikipedia as CGKilogram.jpg,創用CC 姓名標示-相同方式分享 3.0,https://commons.wikimedia.org/w/index.php?curid=2547913
國際公斤原器的電腦示意圖。圖/Greg L, CC by 3.0, wikimedia commons.

雖然巴黎的 IPK 號稱是正港的一公斤。但即使選用不易膨脹和氧化的材質,收藏環境也受嚴密監控,IPK 還是個會隨著時間逐漸發生變化的「凡物」,包含灰塵、濕氣或觸摸時的油汙都會影響它的質量。事實上它可能已微量的發胖了,這讓科學家們有點尷尬啊,因為他們的研究結論常常是建立在永恆不變的單位上頭。

所以新單位會變得怎麼樣呢?

預計到了 2018 年第 26 屆國際度量衡大會,國際度量衡委員會的草案內容仍會維持「公尺(metre)、公斤(kilogram)、秒(second)、安培(ampere)、克耳文(Kelvin)、莫耳(mole)和燭光(candela)」七大單位,讓 SI 在不用大規模更動的情況下,確保當前測量方法的連續性。

其中變化最大的,當然是最後一個使用實體標準的「公斤」,因為科學界將放棄末代小金屬圓柱(IPK 哭哭),改用普朗克常數定義。

普朗克常數用來描述電磁波能量和頻率之間的關係(普朗克-愛因斯坦關係式 E=hν。其中,E 是能量,ν 是頻率和 h 是普朗克常數)是科學中最重要的數字之一,但非常難測量。物理學家們花了二十多年,尋求各種可斷定普朗克常數的方法,其中包含瓦特天平器(Watt Balance)。

-----廣告,請繼續往下閱讀-----

近期任職於美國國家標準與技術局(NIST)的物理學家史蘭明格(Stephan Schlamminger)團隊宣布已取得初步成果:他們把已知質量的物體擺在瓦特天平器的一端,另一端則對線圈施加電流產生機械力,與物體因重力下拉的力達到平衡。從電磁力算出普朗克常數的值後,再透過質能互換公式「E=mc2」求得質量,精準度可達 3.4×10-8。該團隊預計 2017 年 7 月會再次公布他們獨立測量的結果。

等到 2018 年國際度量衡大會從各團隊測量出的數值中,正式挑出一個最準確的版本為最終值後,IPK 就可以退休了。

圖片來源:Richard Steiner@wikipedia, by CC 3.0
美國國家標準技術研究所的瓦特天平。圖片來源:Richard Steiner@wikipeda, by CC 3.0

另一個測量電流的單位「安培」,目前定義為真空中,兩條無限長、無敵細,且相距一公尺的平行導線通過恆定電流時,兩者交互作用所產生某一程度的力,就是一安培。但……無限長、無敵細的導線在現實中根本不存在啊,換掉換掉,改用可以真正被測量的基本電荷吧!克耳文和莫耳也將分別從水的三相點及相對原子質量,改由明確的波茲曼常數(Boltzmann constant)和亞佛加厥常數(Avogadro constant)來定義。

原本就以自然常數定義的公尺、秒和燭光,只需要根據新草案調整一下當前的數值。完整的單位制度變化可見下圖:

-----廣告,請繼續往下閱讀-----
七大國際基本單位的新舊制比較圖。圖片來源:Emilio Pisanty@Wikipedia
2018 年新單位制通過後,國際單位制的定義將從左圖改為右圖。圖/Emilio Pisanty@Wikipedia

「說了這麼多,所以對我會造成什麼影響嗎?2018 年過後,我的身高可以從表定 160 公分灌水成 180 公分,或是體重(名義上)瞬間少十公斤嗎?」

呃……確實不會。但對科學界來說,準確的單位制度可是物理學研究的基礎,而新單位制度也是建立於最新的科學研究上,包含量子機械法則及相對論等。新制度上路後,只要沒有突然發現什麼新的自然常數,研究人員就能放心使用好一陣子啦。

參考資料

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
如何用LEGO研究植物
葉綠舒
・2014/06/29 ・1116字 ・閱讀時間約 2 分鐘 ・SR值 481 ・五年級
相關標籤: 樂高 (8)

愛荷華州立大學(The Iowa State University)材料科學與工程系助理教授Ludovico Cademartiri想了解環境對植物生長的影響,特別是在氣候變化與土壤特性如何影響根系的生長。要進行這樣的研究,植物要暴露於高度受控的環境中,包括養分、水、氧氣以及根的物理障礙物等等都要控制。

140626121723-large
Ludovico Cademartiri 以及 Kara Lind。 圖片來源:Science Daily

過去在植物實驗上最常用的環境控制方式,包括了溫室(Greenhouses)、培養箱(growth chamber)與微流控技術(microfluidic technologies);溫室與培養箱可以為整株植物創造一個大致上控制得還不錯的環境,但是整間溫室都一樣。微流控技術可以建立一個高度控制微米級的環境,但是造價很貴,又比較複雜,也不容易擴充。

Cademartiri認為,這種研究植物和根系的生長的設備,應該是簡單、廉價、靈活、再現性高,並能同時進行多個實驗。這樣的東西最好還能模組化,結構精確又容易擴充,即使在沒有最新的技術或植物科學或農業研究的基礎設施的實驗室也能操作。 當然,這種設備還要透明,可以用高溫高壓消毒,立體,具有安定的化學性質,而且能與現有的植物生長實驗相容。

-----廣告,請繼續往下閱讀-----

看起來達成所有這些要求似乎是很困難,但是他想到了完美的解決方案:樂高積木。

Cademartiri說,不要認為它們就是玩具。樂高積木實際上是以精密非凡的標準來構建的高品質的塑膠模組,我們可以用它來建立任何東西;而且非常適合用來解決複雜的設計問題。

Kara Lind(愛荷華州立大學博士生)說,她在這個研究裡面負責的項目是:搞清楚如何將透明的樂高積木搭成可以充填凝膠或其他土壤替代物,然後讓植物在裡面發芽和生長。她還嘗試把樂高的環境擴充,好讓正在成長中的植物可以繼續裝在裡面。

除此之外,她還開發在樂高的環境中建立化學梯度的技術,未來可以用來測試植物對營養物和毒素的反應。

-----廣告,請繼續往下閱讀-----

研究人員認為,他們最近在PLoS ONE發表的研究結果說明了,對於研究植物根系來說,樂高積木是非常方便和靈活的設備。他們將繼續開發工具庫,製造複雜、實惠又精緻的工具(樂高積木)。

他們是怎麼做的呢?

1. 先用LEGO Digital Designer(簡稱LDD)設計出想要的實驗器具,接著LDD就會產生說明書,並告訴設計者他需要的積木數目與型號。

2. 到LEGO的”pick a brick”網頁進行線上購買。

-----廣告,請繼續往下閱讀-----

3. 等積木來了以後,拿去滅菌後組合。 然後就可以做實驗了!

因為LEGO不是完全密合的,所以當要使用培養基培養植物的時候,在置備培養基的過程中會有少量培養基從隙縫流出,只需要在置備的時候先置備多一點培養基,等培養基冷卻到40度C左右再將培養基倒入LEGO容器,就不會損失太多培養基了。(詳情請看文章所附的影片

參考文獻: LEGO bricks turned into scientific tool to study plant growth. Science Daily [ June 22 ,2014]

原刊載於作者部落格Miscellaneous999

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----