0

0
1

文字

分享

0
0
1

別被自己的眼睛騙了!-神奇的幾何學

活躍星系核_96
・2014/11/20 ・3909字 ・閱讀時間約 8 分鐘 ・SR值 571 ・九年級
相關標籤:

-----廣告,請繼續往下閱讀-----

文/ Rinus Roelofs
譯/余筱嵐

「立面化」(elevation)

在《神聖比例》(La Divina Proportione)一書中,盧卡・帕西奧利(Luca Pacioli)及李奧納多・達文西(Leonardo Da Vinci)介紹了立面化的柏拉圖立體及部分立面化的阿基米德多面體。圖一及圖二正是達文西所繪製的柏拉圖立體及立面化的柏拉圖立體。

1-1
圖一、柏拉圖立體(由左至右分別是:正4面體、正6面體、正8面體、正20面體及正12面體)
1-2
圖二、立面化的柏拉圖立體

何謂多面體的立面化結構?在《神聖比例》第49章中第6及第7段,帕西奧利描述正6面體的立面化結構如下:“⋯⋯它被24個三角形的面包圍,這個多面體的外觀是由6個四角錐所構成,內含一個正6面體,這6個四角錐即分別放置在此正6面體的6個面上。然而,我們只能想像這個正6面體的存在,因為在外觀上,它被6個四角錐緊密包覆,而這6個正方形的面正是這6個四角錐的底面。”

總和而言,這個物體是由24個正三角形的面加上6個隱藏的正方形的面所構成,如圖三分解圖所示。

-----廣告,請繼續往下閱讀-----

關於立面化的八面體(octahedron elevatus),帕西奧利寫道(第50章中第19及第20段):“這個物體的外觀是由8個三角錐所構成,內含一個正8面體。”表示這個物體是由32個正三角形的面所構成。當然,其中8個是隱藏的。

1-3
圖三、立面化正6面體(左)及立面化正8面體(右)分解圖

「星狀化」(stellation)

帕西奧利並沒有真的給「立面化」下一個定義,但是他的描述是非常明確的。在1619年,大約一個世紀後,克卜勒為多邊形及多面體定義「星狀化」:這是一個延伸邊或面的過程,直到這些延伸的邊或面相遇而產生新的多邊形或多面體。

根據克卜勒的定義,星狀化的正8面體的面數和正8面體的面數一樣,因為正8面體中8個三角形的面延伸成為8個較大三角形的面,這些較大三角形的面兩兩相交成為星狀8面體(Stella Octangula),或者也稱為克卜勒星狀多面體(Kepler Star)。艾雪(M.C. Escher)的作品「兩個世界」(Two worlds,圖四)可以讓我們看見這個物體,事實上,正是由兩個互穿的正4面體組合而成。

1-4
圖四、艾雪「兩個世界」    圖五、克卜勒星狀多面體    圖六、艾雪「重力」

「立面化」vs. 「星狀化」

立面化正8面體與星狀化正8面體有一個根本的差異,立面化正8面體有32個面,而星狀化正8面體則有相交的8個面。除此之外,還有一個重要的差異,在克卜勒的定義中談及了一個過程,但帕西奧利的描述則僅止於最終的結果,然而,我們可以重新定義立面化的過程為:多面體立面化的過程,是一個將多面體上每個面的中點向外提升,直到提升的中點與原來多面體的面相鄰的兩個頂點構成正三角形為止。

-----廣告,請繼續往下閱讀-----

推廣這個定義,可以不必要求這些三角形必須是正三角形。根據這個定義,帕西奧利的立面化正12面體,可視為在正12面體與克卜勒星狀12面體之間的一個步驟。艾雪(M.C. Escher)作品「重力」挪去部分星狀結構的面,讓我們更清楚看見這個構造。關於這個作品,艾雪寫道:“在正12面體的每個面上,我們可以看到各有一隻怪獸,牠的身體被五角錐所捕獲。”這和帕西奧利描述的立面化多面體十分相似。採用立面化的新定義,我們可以比較由正12面體構成立面化正12面體的過程,以及由正12面體構成克卜勒星狀12面體的過程。

圖七及圖八顯示正12面體上半部(僅顯示正12面體其中6個五邊形的面)立面化及星狀化的過程,在立面化的過程中,第三個步驟顯示的物體即為《神聖比例》書中發表的物體。但是,當我們繼續這個立面化的過程,我們將得到與星狀12面體相似的結果。因為,此時立面化形成的三角形的面,與原來正12面體的面共面。兩個最終物體最大的不同在於面的個數,立面化正12面體仍然保有五邊形的面,所以,兩個物體都是雙層的結構。

1-5
圖七、立面化
1-6
圖八、星狀化

二次星狀化

由正20面體三角形的面開始延伸產生星狀20面體,圖九顯示動態過程中的四個步驟,在星狀化的過程中,這是我們得到一個新的多面體,每個面的(第一個位置)單元構件。(圖十)

1-7
圖九、一次星狀化正20面體,每個面形狀的形成過程
1-8
圖十、一次星狀化正20面體

不過,我們可以繼續這個過程,並且進一步延伸這些面(圖十一),將得到(第二個位置)每個面的單元構件,所構成的多面體,如圖十二所示。

-----廣告,請繼續往下閱讀-----
1-9
圖十一、二次星狀化正20面體,每個面形狀的形成過程
1-10
圖十二、二次星狀化正20面體

就像艾雪的作品「重力」,我除去了每個面的一部份,讓構造更顯而易見。我十分著迷於現在每個面上所呈現的結構,它並不是一個三角錐,而是三個某個程度變形的三角錐彼此相交的結構。所以,再一次星狀化過程的結果產生非常有趣的結構。現在引發的問題是:在立面化的操作中,也有可能產類似的情形嗎?我們可以定義二次立面化嗎?我們可以期待將會生成什麼樣的物體呢?

二次立面化

採用推廣的立面化定義並應用於正8面體,向外提升正8面體每個面的中點,直到所產生的新形體類似於另一個多面體為止。在這個操作下,第一個得到的是菱形12面體。在這個菱形12面體上,再次採用同樣的操作,並且稱其結果為正8面體的二次立面化,我們停止此操作於:所提升的面與原來菱形12面體的面共面。

1-11
圖十三、正8面體的一次及二次立面化

最右邊的圖形與艾雪所建構的其中一個多面體一樣(圖十四),並且使用於其作品「瀑布」(Waterfall)中(圖十五)。

1-12
圖十四、艾雪多面體的輪廓               圖十五、「瀑布」(Waterfall)

「立邊化」

進一步探討最終的圖形(圖十三),讓我得到一個結論,我們也可以將此圖形視為:在正8面體的每個邊上,都有一個某個程度變形的菱形角錐,而這十二個角錐圍繞此正8面體。意思是說,我們也可以提升正8面體每個邊的中點,得到一樣的圖形。因此,我們可以定義一種新的變換:「立邊化」(Edge Elevation)。立邊化的操作方式為:每個邊的中點與每個面的中點連接,接著提升每個邊的中點,伸展直至此連結(在原來每個邊的位置上)形成由周圍(不包括底面,底面為菱形)四個三角形構成的角錐為止。

-----廣告,請繼續往下閱讀-----
1-13
圖十六、立邊化正8面體的形成過程
1-14
圖十七、顯示模組化元件之立邊化正8面體的形成過程

圖十六描述的正是這個操作的過程。圖十七則顯示同樣的過程,但是採用艾雪在作品「重力」(圖六)中的手法,展示其結構。

正4面體及正20面體

當我們應用立邊化於其他多面體,比如說:正4面體及正20面體,這些物體發展的過程如圖十八及圖十九。立邊化正20面體最終的狀態與二次星狀化正20面體類似。至於正4面體經由立邊化的操作後,我們則得到一個新的物體。

1-15
圖十八、立邊化正4面體的形成過程
1-16
圖十九、立邊化正20面體的形成過程

構造元件

縱使立邊化正20面體看起來與二次星狀化正20面體類似,然而,其中卻有很大的不同點。當我們分析兩個物件的構造,我們會發現它們的面是不一樣的。圖二十的左邊是二次星狀化正20面體的一個面,而右邊是兩個相鄰的立邊化正20面體的面。為了建構立邊化的多面體,我用鐳射切出了這些面,兩個面一組,兩面共用的邊即為其上的摺線,紙的模型顯得相對容易建構。

1-19
圖二十、二次星狀正20面體的面及立邊化正20面體的相鄰兩個面

我首先連接三組面,開始建構立面化正20面體。

-----廣告,請繼續往下閱讀-----
1-17
圖二十一、構造元件、三組連接元件頂視圖及三組連接元件底視圖

如同各位所見,當我們連接越多元件,外部的結構變得十分複雜,然而,多面體的內部結構則一直是菱形的圖案。(圖二十二及圖二十三)

1-18
圖二十二、連接十組面              圖二十三、連接二十組面

例子:測地線球面(Geodesic Sphere)

提升多面體邊的中點之操作方式,可應用於更多不同的物體。比如說:我限定自己嘗試三角形所構成的物體,這些三角形並不需要是正三角形,如圖二十四至圖二十七的測地線球面。因為這些構造都是雙層的,所以十分堅固,甚至可以建構穹頂構造。

1-20
圖二十四、測地線球面(內部)               圖二十五、測地線球面(外觀)
1-21
圖二十六、測地線球面                圖二十七、半球面(穹頂)

例子:柱面(Cylinders)

最後一個例子,我想呈現柱面的構造。(圖二十八及圖二十九)其根本的多面體是螺旋狀的三角化多面體(helical deltahedra)。我想我們可以總結:「立邊化」是一個有趣的新操作,讓我們可以產生出許多有趣的構造。

1-22
立邊化柱面                         立邊化柱面

參考資料:

-----廣告,請繼續往下閱讀-----
  1. Peter R. Cromwell, Polyhedra, Cambridge University Press, UK, 1997.
  2. Luca Pacioli – Leonardo da Vinci, La Divina Proportione, 1509, Ed. Akal, S.A., Madrid, 1991
  3. Luca Pacioli, Divina Proportione: Die Lehre Vom Goldenen Schnitt, 1509, Ed. Carl Graeser, Wien, 1896.
  4. Red. J.W. Vermeulen, Hetoneindige, M.C. Escher over eigen werk, Meulenhoff, Amsterdam, 1986.
  5. Magnus J. Wenninger, Polyhedron Models, Cambridge University Press, UK, 1971.
文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
【suno AI】五音不全也沒關係,讓 AI 幫你唱歌!這些 AI 是怎麼做到音樂生成的?
泛科學院_96
・2024/04/18 ・459字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

不知道大家有沒有被傳說中的OO緊縮術攻擊,總之小編是中招了。

有時候一個人上網也是挺無助的,手足無措的我就想了解一下歌曲生成的魔法是怎麼出現的。

今天就讓我們來評測一下線上歌曲生成的服務,順便說說這些聲音生成是怎麼做出來的。

廢話不多說,讓我們開始吧!

-----廣告,請繼續往下閱讀-----

你有用過什麼更好笑,更好用的 AI 音樂生成工具呢?

我們最近有在研究怎麼用 AI 剪片,還有……AI 女友。

想看剪片的打+1,想看女友的打 <3

有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
29 篇文章 ・ 38 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
降低罹癌風險這樣做!肝癌預防、晚期治療一把罩
careonline_96
・2024/04/17 ・2301字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

罹癌就得放棄工作?晚期肝癌口服標靶藥助彈性兼顧工作與生活!晚期肝癌治療圖文懶人包

台灣肝癌每年約有上萬名新確診的肝癌個案,其中又以 45 歲以上、具備勞動生產力的族群佔多數 。而肝癌因早期症狀不明顯,直到腫瘤較大才可能出現腹脹、腹痛、黃疸等症狀,等到確診肝癌時已有約三成患者為不適合手術治療的晚期〔1〕,且疾病惡化速度快〔2〕。臺大醫院癌症微創中心黃凱文主任指出,根據最新的癌症登記報告,110 年新增的罹病數中 45 歲以上男性近七成〔1〕。可見對於勞動階級的威脅之大,罹病後可能嚴重他們的生活與生計。

發現時為時已晚的肝癌

晚期肝癌新藥藏自費風險,健保申請成功率不到五成

針對早期肝癌,一般會先評估進行手術治療。黃凱文醫師說明,中晚期肝癌除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。晚期肝癌的健保用藥中,目前有一線藥物三種藥物,病人只要符合相關條件,醫師便會協助申請使用,其中有一項是新通過的標靶加免疫藥物的免疫治療組合〔3〕

然而最新的藥物並不一定對病患就是最好的藥物。黃凱文醫師提醒:「目前健保規定三種藥物中只能擇一給付,倘若治療效果不明顯想改用其他藥物,接下來病人有可能要自費使用。」而新藥標靶加免疫的治療組合,相對於另外兩款藥物,健保給付條件較嚴格,如果半年內腫瘤沒有持續縮小,健保便不再給付〔4〕。若要自費繼續使用,經濟負擔就相當沉重。

「就我個人的經驗而言,第一次申請新藥大約只有四成晚期病人可以滿足健保給付條件,而後續第二、三次申請中,目前僅有一半病人能夠續用新藥。」對於健保續用狀況,黃凱文醫師如此分享。

-----廣告,請繼續往下閱讀-----
晚期肝癌治療解析

選擇適合的治療方式,穩定用藥維持生活品質

健保通過新藥後,肝癌治療選擇增加,黃凱文醫師指出,標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三週回診接受治療;而口服標靶藥,只要在家服藥每日一到兩次,病人無需每月來回跑醫院,回診次數相對少很多,對生活及工作影響也較小。

現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適不適合。黃凱文醫師說明,醫師都會與家屬、病人詳細討論。綜合考量,每個人的健康狀況、家庭環境、經濟考量後,共同決策選擇合適的藥物。

由於肝癌早期沒有症狀,具有危險因子的民眾一定要定期追蹤檢查,早期發現、早期治療能夠達到較佳的預後。黃凱文醫師提醒,B 型肝炎或 C 型肝炎帶原者應該及早接受治療,現在已有成效卓越的抗病毒藥物,能夠避免肝臟持續發炎,降低罹癌風險。若確診中晚期肝癌,請不要灰心。黃凱文醫師說,肝癌的治療藥物持續在進步,治療選擇也越來越多。病人只要和醫療團隊密切配合,按部就班接受治療,便有機會達到長期存活!

降低肝癌風險

筆記重點整理

一、 肝癌初期大多沒有症狀,在台灣,新增的肝癌個案中約三成肝癌患者在確定診斷時便是中晚期肝癌,不適合接受手術治療。肝癌的危險因子有很多,包括病毒性肝炎(如 B 型肝炎、C 型肝炎)、肝硬化、脂肪肝、體重過重、酒精性肝炎、抽菸、黃麴毒素、家族病史等。

-----廣告,請繼續往下閱讀-----

二、 針對早期肝癌,一般會先評估進行手術或消融治療。而中晚期肝癌,除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。

三、 標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三周回診接受治療,而口服標靶藥,只要在家服藥每日一到兩次,有助減少回診次數,對生活與工作的影響較小。

四、 新藥的健保給付條件相對較嚴苛,如果半年內腫瘤沒有持續縮小,健保便不再給付,患者需要自費使用藥物。

五、 現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適合患者個人的狀況。

-----廣告,請繼續往下閱讀-----

參考資料

  1. 衛生福利部 110 年癌症登記報告
  2. Nathani, P., Gopal, P., Rich, N., Yopp, A., Yokoo, T., John, B., Marrero, J., Parikh, N., & Singal, A. G. (2021). Hepatocellular carcinoma tumour volume doubling time: a systematic review and meta-analysis. Gut, 70(2), 401–407. https://doi.org/10.1136/gutjnl-2020-321040
  3. 衛生福利部 全民健康保險藥物給付項目及支付標準共同擬訂會議藥品部分第 62 次會議紀錄
  4. 衛生福利部 藥品給付規定

討論功能關閉中。

careonline_96
453 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
少了目鏡的數位顯微鏡
顯微觀點_96
・2024/04/16 ・1996字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

顯微鏡在觀察微小物體上發揮非常重要的作用,但傳統光學顯微鏡通常愈將倍率放大,景深就愈淺,在觀察立體的生物標本或是組織切片,觀察者無論怎樣調焦,依然無法獲得完全清晰的圖片。數位顯微鏡便能解決這樣的問題。

數位顯微鏡和光學顯微鏡最大的差異在於觀察方式。數位顯微鏡不像傳統顯微鏡透過目鏡來觀察,而是使用數位相機獲取畫面,再將即時畫面投影到連接的電腦螢幕。

三要件組成數位顯微鏡

數位顯微鏡結合了傳統光學顯微鏡、數位多媒體和數位處理技術,其成像系統通常包括三個模組:顯微鏡光學模組、資料擷取模組、數位影像處理和軟體控制模組。

-----廣告,請繼續往下閱讀-----

顯微鏡光學模組執行顯微成像的功能,將欲觀察的樣本影像聚焦。一旦聚焦,資料擷取模組就會將影像以數位格式儲存在感光元件,如 CCD(電荷耦合裝置‍)或 CMOS‍(互補式金氧半導體),再透過 USB 或其他介面傳輸到電腦儲存裝置。

軟體控制模組則是整個數位顯微鏡系統的核心,可即時控制、優化擷取的影像,並加以處理、分析測量。尤其隨著功能更強大的電腦出現,數位顯微影像可以得到更有效和高效的處理,例如可以取代手動計數功能,或是快速推疊或拼接影像。

公式

Dtot 表示景深,λ 是照明光的波長,n 是物鏡至觀察物體間介質的折射率,NA 是物鏡的數值孔徑

e 是放置在顯微鏡物鏡圖像中,可分辨的最小距離,M 是橫向總放大倍率

從公式可以看到,景深和總放大倍率幾乎成反比。而以過去難以同時兼備的高倍率和大景深來說,使用顯微鏡調整焦點,搜尋並到達分佈在不同深度的樣本後,再以數位成像設備捕捉分佈在這些深度的所有清晰影像,傳輸到電腦就能產生高品質、清晰的影像。

另外,也可結合雷射和共軛焦顯微鏡觀察不同深度的橫斷切面影像,再利用電腦影像處理和 3D 重建演算法,便能可以獲得高解析度的立體輪廓,進而觀察複雜的細胞骨架、染色體、細胞器和細胞膜。

-----廣告,請繼續往下閱讀-----

數位顯微鏡的電腦即時處理也常應用在動態或活體(in vivo)檢測的研究中,例如細胞膜潛在變化、藥物進入組織或細胞膜的過程等。

902x324p487x175.png

數位顯微鏡的倍率計算

傳統顯微鏡的總放大倍率為目鏡倍率 x 物鏡倍率,既然數位顯微鏡拿掉了目鏡改以數位相機、電腦取代,該如何計算總放大倍率呢?

數位顯微鏡除了光學放大倍率,還必須考慮數位放大倍率,因此總放大倍率=光學放大倍率 x 數位放大倍率

  • 光學放大倍率:物鏡放大倍率 x C 型轉接環放大倍率

由於連接顯微鏡和相機通常有一個 C 型轉接環(C-mount),且內建鏡頭。因此必須先將物鏡放大倍率乘以轉接環的放大倍率。

-----廣告,請繼續往下閱讀-----
  • 數位放大倍率=螢幕(顯示器)尺寸/感光元件尺寸

數位放大倍率必須考慮的元素有螢幕和感光元件。通常螢幕的對角線尺寸以英吋為單位,因此必須先將測量值轉換為毫米(mm);以 19 吋顯示器為例,其對角線測量值則為 19 吋 x 25.4=482.6 (mm)。

感光元件尺寸同樣以對角線的測量值來計算。以 1” 的晶片來說,其對角線測量值為 16(mm)。

感光元件規格(英吋)對角線
1″12.89.316
2/3″8.86.611
1/1.8″7.25.49
1/2″6.44.88
1/2.5″5.84.37
1/3″4.83.66
1/4″3.22.44

因此若以 10X 的物鏡搭配 0.67X 的 C 型轉接環,變焦 5X 後使用 2/3”CMOS 攝錄器拍攝並投影在 24 吋螢幕上。此時總放大倍率為:10 X 0.67 X 5 X 24 X 25.4 / 11 = 1856.5 (倍)

不過,隨著技術的不斷進步,數位顯微鏡和光學顯微鏡間的界限變得越來越模糊,有些數位顯微鏡採用更多光學元件,光學顯微鏡也採用了數位相機技術;相信打破藩籬的那一天指日可待。

-----廣告,請繼續往下閱讀-----

查看原始文章

參考資料

  1. Digital vs. Optical Microscopes: An In-Depth Comparison
  2. How to Calculate Microscope On-Screen Magnification
  3. Chen, X., Zheng, B., & Liu, H. (2011). Optical and digital microscopic imaging techniques and applications in pathology. Analytical cellular pathology (Amsterdam)34(1-2), 5–18.

討論功能關閉中。

顯微觀點_96
3 篇文章 ・ 1 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。