0

0
0

文字

分享

0
0
0

無所不在的輻射危機

探索頻道雜誌_96
・2014/11/21 ・4664字 ・閱讀時間約 9 分鐘 ・SR值 573 ・九年級
相關標籤:

-----廣告,請繼續往下閱讀-----

現代世界環環相扣,每個人都隨時與全球主機連線—工作時、與朋友聯繫時,甚至在家中浴室時。然而代價是什麼?居住在日本的探索頻道雜誌特派員艾瑞克.塔爾梅奇(Eric Talmadge)探討了核子時代的副產物—輻射,以及它的歷史,也分享了他親身的體驗,描述這個國家如何被迫經歷了太多因輻射引起的恐慌。

1950年代早期,電影製作人田中友幸在日本廣島與長崎原爆後,試圖尋找日本的定位,並且想出了一個完美的象徵物。他看著自己的國家從世界大戰的失敗中崛起,第一次有全面戰爭是以這種數十萬人被屠殺的方式收場,而這都是人類最新、最強大的科技發明─原子彈所造成。沒錯,田中的創作就是從海中出現的可怕怪獸哥吉拉。這個變種生物是由可怕且威力驚人的輻射所製造,象徵人類兇暴且具破壞性的自我,並威脅要毀滅人類以及人類的城市、生活與世界。

credit:zh.wikipedia.org
credit:zh.wikipedia.org

田中對於新核子時代的觀點顯然是悲觀的。儘管田中的電影看似滑稽可笑,數十年來娛樂了全球的觀眾,但它其實也預告了未來。核子時代的腳步就如哥吉拉般勢不可擋,而諷刺的是,這個為全球影迷創造出象徵核子時代怪獸的國家,竟再度經歷一場核子夢魘。

2011年以後的福島縣沒有科幻電影裡的可怕末日場景,也沒有變種巨獸。事實上,這個城市仍十分美麗。它曾被九級地震和史上少見的海嘯摧殘,引爆了人類有史以來第二慘烈的核電廠災難,但即使成了二十一世紀核災的代表,三年後的福島市仍面貌如昔。

-----廣告,請繼續往下閱讀-----

福島市路邊漫草叢生,百花齊放,四處是鳥兒和昆蟲的鳴唱。人類也慢慢返鄉了。核電廠穩定下來,封閉起來不再發電。原本迫使10萬居民拋棄家園農田的大片禁區也重新接受評估。調查報告結果顯示,除了住在受到嚴重影響區域的居民,像是緊鄰電廠且因為風向和地勢的關係易於接觸到汙染源的那些人,輻射對大多數人造成的威脅或許沒有災害剛爆發時許多人預期的嚴重。

但三年過去了,該如何集中控制核能反應槽用的大量冷卻水,並且安全地排放,仍然讓工程師傷透腦筋。這個「水滿為患」的問題不但會嚴重威脅環境,也是在電廠可以順利退役前必須解決的關鍵問題。這一代建造了福島電廠,蒙受其惠。然而即使樂觀估計,要讓電廠退役,也得靠下一代和下下一代方能完成。在此同時,我們又學到什麼?

亦友亦敵的輻射

輻射研究剛起步的時候,放射性材料幾乎就像魔術一般。19世紀的科學家如居禮夫婦和亨利.貝克勒(Henri Becquerel)實驗了鐳等放射性物質(他們因為在1896年發現了放射線元素,共同獲得1903年的諾貝爾獎),試圖了解它奇妙的物理特性,而這些特性也很快地激發了大眾的想像。各種令人驚奇且具放射性的玩具隨即問世,從夜光鐘到據說可治癒百病的神奇藥物都有。

居禮夫人因為研究工作的關係長年吸入有毒的氡氣體(也就是鐳的衰變產物),不但長期身體疲勞,經歷一次流產,最後甚至在1934年喪命。居禮夫人認為她的發現可用來治療疾病(確實如此──放射性元素常用於癌症治療),然而在她過世的十年後,參與曼哈頓計畫(Manhattan Project)的科學家卻汲汲營營將原子的力量化為1945年攻擊日本的武器。他們致力改良出更強力的核子炸彈時,原子能源又再度被點名為可以解決人類能源需求的神奇方案。

-----廣告,請繼續往下閱讀-----
credit:zh.wikipedia.org
credit:zh.wikipedia.org

如今全球在31個國家境內共有430個商用反應爐,核能製造的電力相當於1960年用所有方式製造的電力總和。核能供給全球將近11.5%的用電所需,而多虧了地方電網,許多境內沒有反應爐的國家也受惠於核電,例如丹麥和義大利。

擁核者主張這是一種可再生能源,比化石燃料更乾淨,製造的溫室氣體和對氣候變遷的影響也較少。他們也宣稱這種發電方式相對便宜且穩定,而且是使用現場的燃料,不須頻繁地補充燃料。然而即使如此,只要牽涉到輻射,總會有許多風險。

有個經驗法則就是—任何含量的輻射都是不安全的。以專業術語來說就是線性無低限(linear no-threshold,簡稱LNT)理論,也就是只要暴露在輻射下,就不可能「全無風險」。輻射是個典型的難題:有了它我們活不下去,少了它我們也活不下去。但究竟有多少風險是無法避免,甚至可以接受的?論及此事,輻射就變成一個政治性且往往讓人情緒化的公衛議題。

在我們所居住的世界裡(或該說我們已演化成可以在這樣的世界生活),到處都因輻射而熾熱、劈啪作響。舉例來說,太陽光不但賜予了生命,也是種輻射。你在收音機上聽到的音樂、手機裡聽到的聲音,以及微波爐加熱爆米花的熱能也都是輻射。這些輻射有的本身就包含特定危險,例如太陽光會造成皮膚癌。過度頻繁使用手機也可能有其風險,不過這點仍待查證。

-----廣告,請繼續往下閱讀-----

「輻射存在於我們呼吸的空氣、吃的食物、喝的水,或蓋房子使用的建築材料裡,」美國核能管理委員會(United States Nuclear Regulatory Commission,簡稱NRC)指出,「特定食物,例如香蕉和巴西堅果含有的輻射量原本就比其他食物的高。磚造屋或石屋的輻射量也高於木屋等材質製成的房子。」

NRC又繼續解釋,美國華盛頓特區的國會大廈多用花崗石建成,含有的天然輻射比大部份的其他房子都高。他們也指出,天然輻射或背景輻射量也因地而異,差別可以很大。舉例來說,住在內陸科羅拉多州的居民接受的天然輻射,就比美國東西岸的居民來得多,因為科羅拉多州海拔比較高,會接收到比較多的太空輻射,而且該區土壤富含天然的鈾元素,地面輻射量也比較高。NRC又說:「除此之外,許多天然輻射都來自來自地殼的氡氣,它存在於我們呼吸的空氣裡。」氡氣無色無臭,正是當初讓居禮夫人喪命的氣體。我們周遭的天然背景輻射約有一半源自氡氣,它也是讓不吸菸的人罹患肺癌的主要元兇。

還有其他輻射風險是大部分人都願意承受的。如果你常常搭飛機,你得到癌症的機率會比終生留在地面上還高,因為飛機上的乘客位於6至11公里的高空,接收到的太空輻射比那些待在家的人還高了約100倍。如果是住在世界最高首都玻利維亞的拉巴斯市呢?那兒的輻射可高了。你有吃過植物或動物嗎?這些生物體內也含有放射性核種。NRC指出,海鮮裡的輻射特別高,巴西堅果也是。這些東西理論上都可能造成輻射相關的疾病或死亡。

然而有五種輻射毫無疑問地都具致命性,包括α射線、β射線、γ射線、中子射線以及X光。這類輻射稱為游離輻射,能量強到足以改變接觸到的物質組成。它在活組織裡會引發癌症,或造成細胞層次崩壞。游離輻射倘若高到某種程度就會崩解細胞,導致細胞徹底死亡,或讓細胞用錯誤的方式自行修復,引發更多的後續問題,例如癌症。

-----廣告,請繼續往下閱讀-----

高劑量的輻射單位為戈雷(Gray,簡寫為Gy),其影響十分顯著。急性放射性疾病(ARS)患者若接觸到較低劑量但仍可能致死的輻射量,會出現噁心、發燒和骨髓損害等症狀。他們會在數週到數年間恢復。倘若暴露在高達1 Gy以上的輻射裡,患者則可能因內出血或感染而死亡。6 Gy等更高劑量則會造成腹瀉,因為腸道細胞已經全部壞死了。暴露到10 Gy輻射的人在數週內必死無疑;50 Gy的輻射量則足以使心血管系統和中樞神經系統崩壞,讓受害者在數天內喪命。

除非你是在核電廠工作的緊急人員,或剛經歷一場核子攻擊,你不太需要擔心罹患急性放射性疾病。日常生活中並沒有這種程度的劑量。在人類歷史中大多時候也不曾出現過這種劑量。即使經過車諾比大型輻射外洩事件,至今也只有28名員工死於急性放射性疾病。福島也無人因此疾病喪命。但若長時間暴露在低劑量下會發生什麼事?這個問題就要靠統計數據來解答了。

從災難中學習

輻射就好比人類從「科學」這個神燈裡釋出的精靈,而福島事件在歷史上的定位,就跟先前的車諾比事件一樣,象徵這個精靈只差一點就造成的大災難。然而未來數十年我們必須透徹研究,才能真正評估車諾比事件和福島事件對健康和生態系的影響,並了解我們未來該如何避免類似災難。但最關鍵的問題可能終在科學無法觸及之處:這一切是否值得?

credit:zh.wikipedia.org
credit:zh.wikipedia.org
3月16日衛星拍攝的福島第一核電廠影像

「我們往往只考慮輻射對活細胞的影響,」NRC指出,「低劑量輻射對生物的衝擊小到幾不可測,生物體可以自行修復輻射或化學致癌物造成的損傷。雖然高劑量或高劑量率的輻射會引發癌症,目前沒有證據明確指出若暴露在低劑量或低劑量率輻射下,是否也會引發癌症。」

-----廣告,請繼續往下閱讀-----

然而我們不能因此就忽略了線性無低限理論。這些資料只代表我們尚無法從數據中得到結論,而這也可以說明現今核能時代的社會在做公衛決定時為何如此艱難。我們知道在某些情況和劑量下,輻射其實是有益的,但某些狀況下卻又十分危險。遺憾的是,我們的知識大多來自經歷過的核子夢魘,包括發生在廣島與長崎的原子彈爆炸,以及三哩島、車諾比與福島的核災。其中福島事件尤其可以提供我們更多更完整的資訊。

2011年的災害過後不久,福島縣開始進行一項前所未有、長達三十年的健康管理調查,由福島醫科大學規劃與執行,旨在研究長期暴露在低劑量輻射下造成的影響。根據核心研究團隊的早期報告,這個調查旨在「監測居民的長期健康情況,改善他們未來的福祉,並確認長期暴露在低劑量輻射下是否有害健康。」

該調查會估計所有205萬居民的體外輻射污染。他們也會用整體輻射計數器和甲狀腺超音波測量福島十八歲以下孩童的體內輻射污染量,以及針對疏散區的所有居民,特別是孕婦,進行全身健康檢查。

他們特別審慎觀察的是放射性元素碘131。這種元素會累積在甲狀腺裡,而孩童仍在發育中的甲狀腺特別容易病變出癌細胞。約36萬名在災難發生時未滿18歲的孩子,在20歲之前每兩年會接受一次甲狀腺檢查。嬰幼兒最容易因碘131罹患甲狀腺癌,年輕人次之,中年以後這類病例則十分罕見。

-----廣告,請繼續往下閱讀-----

碘131容易在大氣中擴散並隨雨水落到地上,接著累積在牛隻吃的草裡,並進入食用乳製品的孩子體內。車諾比事件後的研究顯示,電廠500公里以內有超過200萬孩童暴露在碘131餘塵中,對健康的影響遍及各地,從白俄羅斯到俄羅斯聯邦的東部,孩童罹患甲狀腺癌的病例就增加了100倍。

車諾比事件的經驗促使當局為了類似事件準備好碘錠,而由於福島居民可以取得這些碘錠,許多生命也許就因此得救。針對福島大約3萬8000名孩童所做的調查顯示,至2013年有12名青少年確診得到甲狀腺癌,另有15個可能癌症病例。研究人員強調我們無法確定癌症的肇因,畢竟篩檢的增加可能讓我們找到更多的病例。但為了增加結果在統計上的可信度,並釐清輻射對健康的直接影響,他們正在日本其他未受核災影響的地區進行研究,作為對照組。

然而有件事卻值得深思。想想看福島核災多麼令人震撼—全世界的人都看到了電視螢幕上戲劇化的報導、那些從事拯救工作的英雄、超過10萬名流離失所的居民、國內外大眾對核災夢魘成真的恐懼。然而國際科學界目前的共識卻讓人意外:福島事件對健康的影響,或至少癌症病例明顯增加的可能性,也許微乎其微。

聯合國核子輻射影響科學委員會於2014年4月發表的研究顯示,目前在福島事件中接觸到輻射的工作人員和大眾,尚未有人因輻射相關因素而送命或罹患急性疾病,未來應該也不會出現類似案例。「的第大眾接觸到的劑量,無論是核災發生一年或終其一生,通常都很低或非常低,」報告指出,「目前我們不認為在這些接觸到輻射的大眾或其後代中,會出現更多與輻射相關的病例。」

-----廣告,請繼續往下閱讀-----

聯合國的研究提出最新福島健康調查的結果,主張目前的資料顯示福島核災引起的甲狀腺癌案例不會增加,並預期「不會有」更多成年人因為暴露在輻射下而罹患癌症。

他們也做了另一個重要的結論,我們可稱為「哥吉拉因子」:對大部分人而言,輻射是種可怕又神祕難解的威脅。福島核災更直接讓他們留下嚴重的心理創傷。創傷後精神壓力障礙(PTSD)、憂鬱、破碎的家庭與受阻的生計——這些都會影響整個社會的健康。當核災這隻巨獸在我們面前出現時,對輻射的恐懼本身就會大大威脅我們的健康。

 

本文出自《探索頻道雜誌 中文版》2014年10月號第21期

文章難易度
探索頻道雜誌_96
10 篇文章 ・ 12 位粉絲
《探索頻道雜誌》以說故事的方式,將複雜艱深的主題轉變成輕鬆有趣的文章,主題包羅萬象,涵括自然、探險、科技、藝術、歷史、環境、旅遊、文化和趣聞軼事等,以科學和人文角度滿足你的好奇心。雜誌滿載大篇幅的彩色實景照片,讓視覺娛樂更豐富。閱讀《探索頻道雜誌》,給你嶄新視野,探索無限可能。

0

1
0

文字

分享

0
1
0
陌生人很危險嗎?為什麼家人不讓我見網友?——《【圖解】女孩的安全教育課》
圓神出版‧書是活的_96
・2024/04/25 ・2451字 ・閱讀時間約 5 分鐘

手機驚見神秘人邀約,可以去嗎?

萱萱的手機突然收到一條陌生簡訊:我有個東西送給你,放學後到後山見。這是我倆的秘密,不能讓別人知道哦。署名是「一個關注你很久的人」。發現有人要送東西給自己,萱萱很興奮。但沒過多久,她就猶豫了:「都不知道是誰,能去見嗎?」萱萱想找小曦商量,但對方說過,不能讓別人知道。她思來想去,還是決定放學後去看看,因為她覺得不能無視別人的好意。

可能發生哪些危險?

  1. 這可能是壞人的陷阱,赴約就有可能被陌生人侵害。
  2. 是壞人發的邀約簡訊,儘管最後逃離了,還是受到侵犯,身心俱損。
  3. 還可能被陌生人控制並拐賣。

遇到危險容易犯的錯!

「知道我電話號碼的,肯定是熟悉的人!」

→ 那可不一定,現在有許多非法商家會買賣電話號碼給壞人。

「去看看,隨機應變,有危險就跑!」

→ 等發現危險,想逃跑就來不及了。

「後山就在學校裡,別人不敢怎樣的。」

→ 後山是學校的偏僻地帶,正適合違法犯罪。

-----廣告,請繼續往下閱讀-----

「人家的好意,無視就太對不起了。」

→ 無視就無視了,如果真要送自己禮物,會另外再找時間送的。與危險相比,不理會陌生邀約是對的。

正確的作法

直接忽視簡訊,當作沒看見

「嗯,不理會就好了!」

也不知道是誰的手機邀約簡訊,不必當真。現在是個資被到處洩漏,陌生人知道自己的手機號碼很平常的年代,對於不明簡訊不用放在心上。

警惕「秘密」二字

「送人禮物可以大大方方,不是什麼秘密。」

-----廣告,請繼續往下閱讀-----

對方如果特別強調不要告訴別人,還提及「這是秘密」之類的字詞,就要特別警惕了。這多半不是好事,千萬不要上當了。

不要一個人去見身分不明的人

「不然我叫幾個同學跟我一起去?」

不用真的保守「秘密」。如果好奇或者覺得必須去,可以多拉幾個同學一起去,而且不要只叫一兩個人,人越多越好。

本篇的學習重點是「不接受陌生人的邀約」。那如果是同學介紹的朋友呢,可以去見見嗎?

-----廣告,請繼續往下閱讀-----

A:最好還是徵求父母的意見,讓大人做主。一般來說,如果是同學介紹的陌生人,也不要一個人去。如果不是非見不可,乾脆就不見,這跟不隨便見網友是同樣道理。反正謹慎總是沒壞處。

陌生網友要免費幫我上課,可以相信嗎?

小曦加入了一個關於「試題測試」的學習群組。有一天,群裡一個自稱某某老師的人加了小曦的臉書,私訊說可以免費一對一視訊指導。小曦一聽是免費上課,立刻就答應了。對方還提出,為了能真實了解小曦的學習情況,最好選擇父母不在身邊的時間聊,以防打擾。就這樣,小曦跟沒見過面的這位老師,約定了第一次視訊聊天的時間。

可能發生哪些危險?

  1. 免費的視訊教學可能有欺詐風險。
  2. 跟陌生人視訊聊天,容易讓陌生人有機會了解自己,控制自己。
  3. 很多網路性侵的發生,都是從跟陌生人聊天開始的,要特別注意。

遇到危險容易犯的錯!

「免費的視訊教學喔,機不可失!」

→ 網路上切忌貪便宜,世上沒有白吃的午餐,網路上也是。

「只是視訊聊天而已,對方是侵犯不到自己的。」

→ 小女孩分辨力弱,而壞人手段很多,他們總有辦法施行犯罪的。

-----廣告,請繼續往下閱讀-----

「試試看,如果覺得不可靠就不聯繫!」

→ 試試看的心理經常會害人。一定不要輕易嘗試,試了就有可能上鈎,提高被侵犯的可能性。

正確的作法

把源頭堵住,不接受陌生人加好友的請求

「不加陌生人好友!」

一旦加了陌生人,對方就有機會施行詐騙或侵犯,一定不要隨便加陌生人好友。

堅決拒絕陌生人的視訊聊天請求

「跟他又不熟,視訊聊天幹嘛?」

-----廣告,請繼續往下閱讀-----

不管陌生人以什麼理由要求視訊聊天,都要堅決拒絕。主動找小女孩視訊聊天的陌生人,一般都不是好人。

警惕那些免費的網路行銷

「免費的?不可能!」

網路上很多違法亂紀,都是從免費的網路行銷開始的,有些女童性侵案件也是。所以在網路上一定要特別提高警覺,壞人很容易利用貪便宜的心理進行詐騙和侵犯。

本篇的學習重點是「不跟陌生人視訊聊天」。那在網路上認識很久,只是沒有見過面的人,算不算陌生人,能不能視訊聊天?

-----廣告,請繼續往下閱讀-----

A:沒見過面的網友也算陌生人,也不能隨便視訊聊天。網路世界的複雜度不亞於現實社會,小女孩不能因為是網路就掉以輕心。不要隨便視訊,更不要隨便把自己的私密部位給其他人看。

——本文摘自《【圖解】女孩的安全教育課:面對 38 個危險情境,這樣保護自己》,2021 年 9 月,如何出版,未經同意請勿轉載。

討論功能關閉中。

圓神出版‧書是活的_96
13 篇文章 ・ 3 位粉絲
書是活的,他走來溫柔地貼近你,他不在意你在背後談論他,也不在意你劈腿好幾本。 這是一種愛吧。 圓神書活網 www.booklife.com.tw

0

1
0

文字

分享

0
1
0
如何找到肺癌對應基因?臨床實驗幫助病友翻轉病情!
careonline_96
・2024/04/24 ・2515字 ・閱讀時間約 5 分鐘

給 每一位剛踏上抗癌路上的鬥士與戰友

確診晚期肺癌的病友,在治療初期若是能與醫師密切配合,就有機會可以找到很好的治療方式,讓病情翻轉。進入治療前,首先會透過基因檢測,找出關鍵的基因突變,若是未發現常見基因突變,也可利用次世代基因定序,找出罕見基因。肺癌的治療已像慢性病一樣,只要妥善運用基因檢測與接續治療策略,就有機會延長病友的存活期,無論是帶有 EGFR、ALK、ROS1、BRAF、HER2、RET、MET、KRAS、NTRK 等基因突變,目前也都已經有很好的標靶藥物可治療,病友只要了解自己的疾病概況,與醫師充分溝通,一起把握每一次治療的機會!

大林慈濟醫院副院長賴俊良醫師

次世代基因定序助攻!揪出罕見肺癌改善病友預後

一名確診晚期肺癌的 50 多歲男性,在進行一般的基因檢測時並沒有找到突變基因,病程也加速惡化,且伴隨糖尿病、高血壓、腎功能衰退,全身嚴重浮腫。所幸,再接受次世代基因定序檢測後,很幸運地發現他是較罕見的 MET 基因。賴俊良醫師說,MET 基因分為不同的突變型,而該名病友屬於較少見的擴增型,後續在使用相對應的標靶藥物治療後,全身浮腫的狀況逐漸改善,病情也受到控制,且恢復到原本的工作與生活。

標靶藥物各有專攻 找到對應基因才能發揮效果

台灣的肺腺癌以 EGFR 基因突變為主,其他基因突變相對稀少,包含 ALK、KRAS、BRAF、ROS1、RET、NTRK 等。賴俊良醫師說,由於國人常見的致癌基因約佔一半以上,因此,通常會先檢測這些突變基因,若是找不到突變基因,則是會採取更先進的檢測方法找出突變基因,而次世代基因定序是目前肺癌精準治療的重要工具,可以更準確地找到驅動關鍵基因,醫師也可以從而制定精準的治療策略,進而大幅改變病友的預後。

晚期肺癌的治療藥物已有相當大的突破與進展,在過去不知道有這些基因突變時,部分病友的預後較差,但現在針對主要的驅動基因,幾乎都有相對應的藥物可以治療,賴俊良醫師說,有些病友知道標靶藥物治療成效佳,堅持只接受標靶治療,其實概念上並沒有這麼簡單,不同的驅動基因要使用不同的標靶藥物,才有辦法發揮治療效果。

臨床試驗安全性高 為病友帶來新契機

一般人聽到臨床試驗,常直覺是白老鼠,賴俊良醫師說,這樣的錯誤觀念仍有待匡正,其實所有藥物都必須先經過動物實驗,確認有明顯的治療成效,才會進到人體試驗,且第一期、二期、三期分別有不同的條件與目的,只有在第一期和第二期執行成果中,顯示其具有前景的試驗,才會進入第三期,在臺灣進行的臨床試驗都已具有相當完善的規範,也會在保護受試者的情況下進行。病友若是治療遇到瓶頸時或是可能需要自費或是參加臨床試驗,賴俊良醫師建議,若符合可以參加臨床試驗的條件,病友及家屬可以進一步與主治醫師討論了解,也有機會可以找到新契機,讓病情翻轉。

-----廣告,請繼續往下閱讀-----

他的故事 談面對恐懼

罹癌就像暴風雨 家人陪我度過每個關卡

曾經聽人家說「罹癌是上天給的禮物」,這個天上掉下來的禮物很痛苦、很折磨,也狠狠把我 K 醒!才 53 歲的我,去(2023)年 3 月起連續兩個月咳個不停,確診為肺腺癌第四期,我的腦子一團亂,醫師開始為我化療,治療期間我吃不下、甚至沒辦法走路,家人擔心再化療下去可能連命都沒了。

就像落水的人,拼命想抓住救生圈,經過不斷打聽,朋友介紹到大林慈濟賴副院長的門診。第一次住院待了 33 天,治療期間,好像一個人漂浮在汪洋中,害怕上不了岸,擔心得連呼吸都困難;沒想到最後可以出院,體力還變好,原本沒辦法行走,後來能夠走出醫院,過了這個坎,好像就沒有什麼好怕的了。

過去從事餐飲業,每天至少一包菸,加上廚房的油煙,破壞身體免疫力。以前認為跟家人除夕吃團圓飯很平常,罹癌住院 33 天的經驗,讓我知道這個「平常」代表「幸福」。治療中,太太、兒女一路陪我度過每個關卡,從身體不舒服的第一天,到住院、標靶藥物和門診追蹤,可靠又溫暖的陪在身旁。

我有十幾年糖尿病的歷史,罹癌後發現血壓、腎臟指數飆高,全身浮腫,醫院安排做次世代基因定序檢測,醫師說,我是 MET 基因中第二類比較少見的擴增型,從去年 5 月開始服用標靶藥物治療,全身浮腫的狀況改善了,病情也控制住,除了容易累,體力比較差,沒有影響到生活,我想老天爺在給我機會。

-----廣告,請繼續往下閱讀-----

癌症就像一場暴風雨,考驗自己的內心,生活變得很慌亂,遇到事情就去面對它、解決它,慢慢把腳步站穩後,暴風雨過去了,接下來的每一天都要好好過,或許癌症真的是一個生命的禮物,敦促著我們找回人生最重要的事,也提醒正在看這封信的學弟妹們,醫療這麼發達,穩定用藥就可以擁有好的生活品質,不要放棄;開心是一天,不開心也是一天未來每一天,我選擇開心地過。

0

2
1

文字

分享

0
2
1
量子糾纏態的物理
賴昭正_96
・2024/04/24 ・5889字 ・閱讀時間約 12 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我不會稱量子糾纏為量子力學的「一般 (a)」特徵,而是量子力學「獨具 (the)」的特徵,它強制了完全背離經典的思想路線。

——薛定鍔(Edwin Schrödinger)1933 年諾貝爾物理獎得主

相對論雖然改寫了三百多年來物理學家對時間及空間的看法,但並未改變人類幾千年來對「客觀宇宙」——「實在」(reality)——的認知與經驗:不管我們是否去看它,或者人類是否存在,月亮永遠不停地依一定的軌道圍繞地球運轉。可是量子力學呢?它完全推翻了「客觀宇宙」存在的觀念。在它的世界裡,因果律成了或然率,物體不再同時具有一定的位置與運動速度……。

這樣違反「常識」的宇宙觀,不要說一般人難以接受,就是量子力學革命先鋒的傅朗克(Max Planck)及愛因斯坦(Albert Einstein)也難以苟同!但在經過一番企圖挽回古典力學的努力失敗後,傅朗克終於牽就了新革命的產物;但愛因斯坦則一直堅持不相信上帝在跟我們玩骰子!因此 1935 年提出了現在稱為「EPR 悖論(EPR Paradox)」的論文,為他反對聲浪中的最後一篇影響深遠的傑作。

1964 年,出生於北愛爾蘭、研究基本粒子及加速器設計的貝爾(John Bell),利用「業餘」時間來探討量子力學的基礎問題,提出題為「關於愛因斯坦(Einstein)-波多爾斯基(Podolsky)-羅森(Roson)悖論」的論文。貝爾深入地研究量子理論,確立了該理論可以告訴我們有關物理世界基本性質的地方,使直接透過實驗來探索看似哲學的問題(如現實的本質)成為可能。

2022 年的諾貝爾物理獎頒發給三位「用光子糾纏實驗,……開創量子資訊科學」的業思特(Alain Aspect)、克勞瑟(John Clauser)、蔡林格(Anton Zeilinger)的物理學家。讀者在許多報章雜誌(如 12 月號《科學月刊》)均可看到有關貝爾及他們之工作的報導,但比較深入討論貝爾實驗的文章則幾乎沒有。事實上貝爾的數學確實是很難懂的,但只要對基本物理有點興趣,我們還是可以了解他所建議之實驗及其內涵的。因此如果讀者不怕一點數學與邏輯,請繼續讀下去吧:我們將用古典力學及量子力學推導出在實驗上容易證明/反駁的兩個不同結果。

-----廣告,請繼續往下閱讀-----

角動量與自旋角動量

在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。

量子力學裡的角動量有兩個與我們熟悉之角動量非常不同的性質:

  1. 前者不能連續變化,而是像能量一樣被量化(quantized)了,例如電子的自旋量子數為 ½,所以我們在任何方向上所能量到的自旋角動量只能是 +½(順時針方向旋轉)或 -½(逆時針方向旋轉)
  2. 後者的角動量可以同時在不同的方向上有確定的分量,但基本粒的(自旋)角動量卻不能。

EPR 論文

EPR 論文討論的是位置與動量的客觀實在性;貝爾將其論點擴展到自旋粒子的角動量上,討論兩個粒子相撞後分別往左、右兩個不同方向飛離後的實驗。因曾相撞作用之故,它們具有「關連」(correlated)的自旋角動量;但常識與經驗告訴我們,如果分開得夠遠的話,它們之間應不再互相作用影響,因此我們在任一體系所做的測量也應只會影響到該體系而已。這「可分離性」(separability)及「局部性」(locality)的兩個假設可以説是物理學成功的基石,因此沒有人會懷疑其正確性的。

讓我們在這裡假設粒子相撞後的總自旋角動量爲零。如果我們測得左邊粒子的 B- 方向自旋為順時(見圖一),則可以透過「關連」而預測右邊粒子的 B- 方向自旋應為逆時。因右邊粒子一直是孤立的,基於物理體系的「可分離性」與「局部性」,如果我們可以預測到其自旋的話,則其自旋應該早就存在,爲一「實在」的自然界物理量。

-----廣告,請繼續往下閱讀-----
EPR 與貝爾實驗裝置。 圖/作者提供   

同樣地,如果我們突然改變主意去量得左邊粒子的 C- 方向自旋為順時,則也可以透過「關連」而預測到右邊粒子的 B- 方向自旋應為逆時。但右邊粒子一直是孤立的,因此其 C- 方向自旋也應該早就存在,亦爲一「實在」的自然界物理量。所以右邊的粒子毫無疑問地應同時具有一定的 B- 方向自旋與 C- 方向自旋。同樣的論點也告訴我們:左邊的粒子毫無疑問地也應同時具有一定的 B- 方向自旋與 C- 方向自旋。如果量子力學説粒子不能同時具有一定的 B- 方向與 C- 方向自旋,而只能告訴我們或然率,那量子力學顯然不是一個完整的理論!

貝爾的實驗

貝爾將這一個物理哲學上的爭論變成可以證明或反駁的實驗!如圖一,我們可以設計偵測器來測量相隔 120 度的 A、B、C 三個方向的自旋(順時或逆時)。依照古典力學(EPR),自旋在這三個方向上都有客觀的存在定值。假設左粒子分別為(順、順、逆);則因總自旋須爲零,右粒子在三方向的自旋相對應爲(逆、逆、順)。在此情況下,如果我們「同時去量同一方向」之左、右粒子自旋,應可以發現(順逆)(順逆)(逆順)三種組合。可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,應可以發現的組合有(順逆)(順逆)(順順)(順逆)(順逆)(順順)(逆逆)(逆逆)(逆順)九種;其中相反自旋的結果佔了 5/9。讀者應該不難推出:不管粒子在三方向的自旋定值爲何,發現相反自旋的結果不是 5/9 就是 9/9,即永遠 ≥ 5/9。

量子力學怎麼說呢? 在同一個假設的情況下, 量子力學也說如果我們「同時去量同一方向」之左、右粒子自旋, 應發現的組合也是只有(順逆)(順逆)(逆順)三種。但量子力學卻說:可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,則會得到不同於上面預測之 ≥ 5/9 的結果!為什麼呢?且聽量子力學道來。

量子力學與或然率

自動角動量。圖/作者提供

在古典力學裡,如果在某個方向測得的自旋角動量為 +½,則其在任何方向的分量應為 +½ cosθ,如圖二所示。但在量子力學裡,因為不可能同時在其它方向精確地測得自旋角動量,因此分量只能以出現 +½ 或 -½ 之或然率來表示;這與古典力學不同,也正是問題所在。但古典力學到底還是經過幾百年之火煉的真金,因此如果我們做無窮次的測量,則其結果應該與古典力學相同:即假設測得 +½ 的或然率是 P,則

-----廣告,請繼續往下閱讀-----

如果角度是 120º,則解得 P 等於 1/4:也就是說有 1/4 的機會量得與主測量同一方向(+½)自旋角動量,3/4 機會量得 -½ 自旋角動量。

讓我們看看這或然率用於上面所提到之貝爾實驗會得到怎麼樣的結果。依量子力學的計算,如果在左邊 A- 方向量得的是順時鐘的話,則因「關連」,右邊 A- 方向量得的便一定(100%)是逆時鐘;但因角動量不能同時在不同的方向上有確定的分量, 故在其它兩方向量得逆時鐘的或然率依照上面的計算將各爲 1/4,因此左、右同時測得相反自旋的或然率只有 ½ [=(1+1/4+1/4)*3/9,三方向、九方向組合]而己。

實驗結果呢?1/2,小於 5/9!顯然粒子在不同方向同時具有固定自旋的假設是錯的!EPR 是錯的!古典力學是錯的!量子力學戰勝了!貝爾失望克勞瑟賭輸了!

量子糾纏態

上面提到如果左邊 A- 方向量得的是順時鐘的話,則右邊 A- 方向量得的便一定(100%)是逆時鐘;可是左、右粒子在作用後,早已咫尺天涯,右粒子怎麼知道左粒子量得的是順時鐘呢?量子力學的另一大師薛定鍔(Edwin Schrödinger)從 EPR 論文裡悟到了「糾纏」(entanglement)的觀念。他認爲在相互作用後,兩個粒子便永遠糾纏在一起,形成了一個量子體系。因是一個體系,因此當我們去量左邊粒子之自旋時,量子體系波函數立即崩潰,使得右邊粒子具有一定且相反的自旋。可是右邊的粒子如何「立即知道」我們在量左邊的粒子 A- 方向及測得之值呢?那就只有靠愛因斯坦所謂之「鬼般的瞬間作用」(spooky action at a distance)了!此一超光速的作用轟動了科普讀者3!筆者也因之接到一些朋友的詢問,為寫這一篇文章的一大動機。

-----廣告,請繼續往下閱讀-----

可是仔細想一想,在古典力學裡不也是這樣——如果左邊 A- 方向量得的是順時,則右邊 A- 方向量得的便一定是逆時——嗎?但卻從來沒有科學家或科普讀者認為有「鬼般的瞬間作用」或「牛頓糾纏態」去告訴右邊粒子該出現什麼。這「鬼般的瞬間作用」事實上是因為在未測量之前,量子力學認為右邊粒子自旋是存在於一種沒有定值之或然率狀態的「奇怪」解釋所造成的。例如我們擲一顆骰子,量子力學說:在沒擲出之前,出現任何數的或然率「存在」於一種「波函數」中。但一旦擲出 4 後,波函數便將立即崩潰:原來出現 4 之 1/6 或然率立即瞬間變成 100%,其它數的或然率也立即瞬間全部變成零了。但在日常生活中,我們(包括 EPR)從不認為那些或然率「波函數」為一「客觀的實體」,故也從來沒有人問:其它數怎麼瞬間立即知道擲出 4 而不能再出現呢?波函數數怎麼瞬間立即崩潰呢?

事實上從上面的分析,讀者應該可以看出:根本不需要用「右粒子『知道』左粒子量得的是順時鐘」,我們所需要知道的只是量子力學的遊戲規則:粒子的角動量不能同時在不同方向上有確定的分量;即如果 100% 知道某一方向的自旋,其它方向的自旋便只能用或然率來表示。一旦承認這個遊戲規則,那麼什麼「量子糾纏態」或「鬼般的瞬間作用」便立即瞬間消失!這些「奇怪」名詞之所以出現,正是因為我們要使用日常生活經驗語言來解釋量子系統中訊息編碼之奇怪且違反直覺的特性4 所致。

結論

在想用日常生活邏輯或語言來了解自然界的運作失敗後,幾乎所有的物理學家現在都採取保利(Wolfgang Pauli)的態度:

了解「自然界是怎樣的(運作)」只不過是形上學家的夢想。我們實際上擁有的只是「我們能對大自然界說些什麼」。在量子力學層面,我們能說的就是我們能用數學來說的——結合實驗、測試、預測、觀察等。因此,幾乎所有其它事物在本質上都是類比和或想像的。事實上,類比或意象性的東西可能——而且經常——誤導我們。

-----廣告,請繼續往下閱讀-----

換句話說,物理學的任務是透過數學計算5,告訴我們在什麼時刻及什麼地方可以看到月亮;至於月亮是不是一直那裡,或怎麼會到那裡……則是哲學的問題,不是物理學能回答或必須回答的。如果硬要用日常生活邏輯或語言去解釋月亮怎麼出現到哪裡,那麼我們將常被誤導。

誠如筆者在『思考的極限:宇宙創造出「空間」與「時間」?』一文裡所說的:『空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要』,我們在這裡也可以說;「量子糾纏態」根本不存在,它只是用來說明量子力學之奇怪宇宙觀的「語言」而已;沒有量子力學的或然率自然界,就沒有「量子糾纏態」的必要。

註解

  1. 讓我們回顧一下在 1925 年最早提出電子自旋觀念的高玆密(Samuel Goudsmit)及烏倫別克(George Uhlenbeck)當時所遭遇到的困擾。如果不是因為他們那時還是個無名小卒的研究生,提出電子自旋的人大概便不是他們了!底下是烏倫別克的回憶:『然後我們再一起去請教(電磁學大師)羅倫玆(Hendrik Lorentz)。羅倫玆不只以他那人盡皆知的慈祥接待我們,並且還表現出很感興趣的樣子——雖然我覺得多少帶點悲觀。他答應將仔細想一想。一個多禮拜後,他交給我們一整潔的手稿。雖然我們無法完全了解那些長而繁的有關自旋電子的電磁性計算,但很明顯地,如果我們對電子自旋這一觀念太認真的話,則將遭遇到相當嚴重的難題!例如,依質能互換的原則,磁能便會大得使電子的質量必須大於質子;或者如果我們堅持電子的質量必須為已知的實驗數值,則電子必須比整個原子還大!高玆密及我都認為至少在目前我們最好不要發表任何東西。可是當我們將決定告訴羅倫玆教授時,他回答說:「我早已將你們的短文寄出去投稿了!你們倆還年青得可以去做一些愚蠢的事!」』。後來呢?電子自旋的概念在整個量子力學的系統裏,脫出了「點」與「非點」這類的爭論,而被物理學界普遍接受。今天當物理學家用「電子自旋」這一術語時,有他們特定的運作定義,絕不虛幻,但也絕不表示電子是一個旋轉的小球(因為那將與實驗不符);但是有時把電子看為自轉的小球,可以幫助我們理解與教育初學者。
  2. 單位為普朗克常數(Planck constant)除以 2π。
  3. 玻爾(Niel Bohr):「那些第一次接觸量子理論時不感到震驚的人不可能理解它。」
  4. 這種量子效應以前一直被認為造成困擾,導緻小型設備比大型設備的可靠性更低、更容易出錯。但 1995 年後,科學家開始認識到量子效應雖然「令人討厭」,但實際上可以用來執行以前不可能處理的重要資訊任務,「量子資訊科學」於焉誕生。
  5. 薛定鍔:「量子理論的數學框架已經通過了無數成功的測試,現在被普遍接受為對所有原子現象的一致和準確的描述。」

延伸閱讀

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。