Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

有伴的老行星,生命能生存的機會也增高

臺北天文館_96
・2014/08/10 ・1261字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

10TrillionAD_2

美國華盛頓大學(University of Washington)天文學家Christa Van Laerhoven、 Rory Barnes和亞利桑納大學(University of Arizona)Richard Greenberg等人發現:年紀大了還有好友相伴是件很棒的事,對宇宙中的地球級老行星而言也一樣。

行星會隨著時間緩緩冷卻,熔融的核心逐漸固化,內部的產能活動逐漸平息,無法藉由控制二氧化碳含量來防止失控暖化或失控冷化,因而無法維持適合生物生存的環境。但Van Laerhoven等人發現:某些與地球大小差不多的古老行星,受到其外側鄰近行星伙伴的重力拉扯,能產生足夠的熱來防止行星內部冷卻,讓行星環境能留存生命的機會變大;這個過程稱為「潮汐加熱(tidal heating)」。

潮汐加熱並非新理論,木星衛星中的木衛一(埃歐,Io)和木衛二(歐羅巴,Europa)就受到木星重力的潮汐加熱作用,使它們內部被加熱,讓木衛一迄今仍有非常活躍的火山作用,木衛二則可能有個地下海洋。

這些天文學家將相同概念應用在系外行星系統的電腦模擬中,結果發現:在年老的低質量恆星的適居區中,以非圓形軌道公轉的年老地球級系外行星,也存有這種潮汐加熱效應。這類低質量恆星的質量僅約太陽的1/4而已,是以其適居帶也比較接近恆星本身。

-----廣告,請繼續往下閱讀-----

行星離母恆星愈近,所受到的恆星重力愈強,行星可能會被恆星重力拉扯變形成橄欖球狀;當離恆星愈遠,受到恆星重力愈弱,行星會「放鬆」成球形。這種接連不斷的鬆弛過程,可導致行星內部層狀結構彼此間互相摩擦而生熱。

之所以需要外側鄰近處有另一顆行星,是因為如此一來才能保持地球級行星的軌道為非圓形軌道,也才有打造適居行星的潛能。否則當地球級行星軌道接近圓形,繞母恆星公轉時受到的重力大小幾乎不變,行星形狀不會改變,也就沒有潮汐加熱的效應了。

因此,這些天文學家認為:一旦發現某顆又老又小的恆星的適居區中有地球級行星,那得趕緊在稍外側之處搜尋看看有沒有另一顆行星;如果有,那麼適居區中的這顆地球級行星擁有生命適存環境的機會就多了一些。

若老行星有它自己的板塊運動,再加上受到外側鄰近行星伙伴的潮汐加熱效應,或許可讓這樣的行星的表面成為宇宙中適居時間最長的世界之一。或許在遙遠的未來,當我們的太陽死亡之後,人類的子孫後裔就是生活在這類行星上。

-----廣告,請繼續往下閱讀-----

圖片說明:某顆繞行小一點的老恆星公轉的年老行星,受到外側鄰近的行星伙伴的重力影響,可能因潮汐加熱而產生足夠的熱能,即使它們的母恆星逐漸老去,無法在進行核融合反應來產生光與熱,年老行星依然能保持適合生命生存的環境。但這樣的行星看起來會是什麼模樣?Barnes解釋:如果其母恆星與太陽大小差不多,則當這顆恆星老去,表面溫度降低使得適居帶比較接近恆星本身,在適居帶中的行星所見的太陽,將比現今在地球上所見還大10倍;而畫面右上方的彎月狀天體,不是月亮,而是顆鄰近的土星級行星,正是這顆鄰近行星的潮汐加熱使行星表面還維持適居狀態。影像中所見的天空偏暗,這是因為這顆老恆星所發出的輻射中,藍光的比例偏低,所以行星大氣並不會因為散射藍光而讓天空看起來如地球一樣是淺藍的。

資料來源:Companion planets can increase old worlds’ chance at life, 2014.07.31, KLC

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
為什麼微波爐加熱總是不均勻?—《解事者》
天下文化_96
・2016/11/29 ・1098字 ・閱讀時間約 2 分鐘 ・SR值 399 ・三年級

生活中常見的微波爐能快速加熱食物的秘密是什麼?圖/Jorge Sanz@flickr, CC-by2.0
生活中常見的微波爐能快速加熱食物的秘密是什麼?圖/Jorge Sanz@flickr, CC-by2.0

加熱食物的無線電箱子:微波爐

這種箱子用一種無線電波加熱食物。無線電波讓東西裡面很小很小的水滴搖動,愈搖愈快。當東西裡的很多小水滴都搖得很快, 東西就變熱了。如果讓很強的無線電波穿過水,水會變熱。 有了加熱食物的無線電箱子,你就可以買冷凍食品,在冰箱冰很久,要吃的時候,再用箱子加熱,把冰熔化。這對沒有時間煮飯的人很方便。你也可以用無線電箱子加熱新鮮的食物(例如魚) 做成各種菜,就跟用廚房其他加熱工具做菜一樣。不過用這種箱子做菜沒那麼簡單,尤其是煮肉時要小心一點。

無線電波

這種無線電箱子使用的電波,波長跟家裡電腦的無線網路「熱點」一樣。其實不同種類的無線電機器使用的電波波長都不一樣,但這兩種卻用完全一樣的波長,這是有原因的。 就在加熱食物的無線電箱子愈來愈普遍的時候,用無線電傳送資料的設備也開始變多。由於當時家家戶戶都已經在使用這種無線電箱子,各國決定把箱子用的波長(大約是手掌寬)開放,讓每個人都可以用。於是制定無線網路的人就用了這個波長,因為這是大家都能在家使用的少數波長。 如今全世界電腦傳送資料使用的波長,跟加熱食物的無線電箱子一樣。這不會有問題,除非你的無線電箱子有破洞,那你在加熱食物時,電腦上的影片可能就停了。

為什麼變熱的食物裡面還有冰?

無線電箱子很會把水加熱,對冰卻不大行。箱子可以加熱冰,但是要花很久的時間。 當你把冷凍食品放進無線電箱子加熱,過一會兒後, 有一部分開始變成水。因為無線電箱子很會把水加熱,這些水很快就變得更熱,甚至在冰還沒完全融化之前,這些水就變成水蒸氣了。 要避免這種情形,你可以把無線電箱子的強度調小一 點,這樣加熱過程中會有很多次暫停,因此有多一點時間讓熱傳送到其他部位,就不會有些地方特別燙了。

-----廣告,請繼續往下閱讀-----
  • 從上文知道微波爐是靠著無線電波讓水滴搖動、使得食物被加熱,但你曾想過微波爐中的無線電波的分布狀況嗎?
加熱食物的無線電箱子:微波爐

解事者

本文摘自《解事者:複雜的事物我簡單說明白》,天下文化出版。本書獲選為泛科學 2016 年 11 月選書。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
天文學家發現高齡128億歲的古老行星系統
臺北天文館_96
・2012/04/07 ・1350字 ・閱讀時間約 2 分鐘 ・SR值 570 ・九年級

一組歐洲天文學家發現一個非常古老的行星系統,極可能是從130億年前宇宙極早時期就已形成並留存至今的。這個系統包含母星HIP 11952和兩顆行星,這兩顆行星的公轉週期分別為290天和7天。雖然行星通常在含有金屬元素(metal)比較多的雲氣中形成,HIP 11952卻鮮少含有金屬元素;因此HIP 11952行星系統的發現,顯示在早期宇宙金屬元素豐度仍很低的時期,就已經可以形成行星,和現今宇宙內如我們太陽系這樣的行星系統相當不同。

所謂的金屬元素,泛指除了氫與氦兩種宇宙誕生之初就有的元素以外的其他所有元素,又稱為「重元素」。

現行公認的行星形成理論認為行星是在年輕恆星周圍、由氣體和塵埃組成的拱星盤中形成的。但若要探討形成的細節,這個理論就會產生諸多問題,其中一個問題就是:致使氣體塵埃開始聚集形成行星的真正原因為何?

天文學家現在已經在太陽系以外的地方,至少確認750顆恆星擁有一顆以上的行星,且發現這些行星系統的環境差異頗大,但也存在某些特定趨勢,例如:經統計,含有較多金屬元素的恆星,較可能擁有行星。這個現象引出了一個關鍵問題:宇宙誕生之初幾乎不含有任何氫與氦以外的金屬元素,金屬元素是經由一代一代的恆星演化,經由恆星內部的核融合反應或是經由超新星爆炸而產生,之後再回歸到宇宙空間,成為下一代恆星的製作原料;因此愈古老的恆星金屬豐度愈少,愈靠近現今宇宙的恆星則含有比例較高的金屬元素。若按現行的行星形成理論,那麼在宇宙早期,幾乎沒有金屬元素的狀況下,是幾乎不可能形成行星?還是應該可以形成行星,所以下一步應該是要好好想想第一代行星會在何時形成?

-----廣告,請繼續往下閱讀-----

德國普朗克天文研究所(Max-Planck-Institute for Astronomy)Johny Setiawan及慕尼黑天文臺(University Observatory Munich)Veronica Roccatagliata等天文學家從數年前開始進行一項研究計畫,搜尋貧金屬星(metal-poor star)可能含有的行星系統,結果發現其中一顆貧金屬星HIP 11952,擁有2顆氣體巨行星HIP 11952b和HIP 11952c。HIP 11952在鯨魚座方向,距離地球約375光年。這兩顆行星本身相當普通,與其他已知的氣體巨行星並無啥大不相同之處;它們的不平凡之處在於它們的母星是顆「極貧金屬星(extremely metal-poor star)」,換言之,是顆非常古老的恆星。

Roccatagliata等人其實在2010年時就發現一顆貧金屬星HIP 13044有行星系統,當時他們還覺得應該是特例。但在HIP 11952如此金屬豐度更貧乏的恆星周圍也發現行星之後,他們開始改觀,認為或許貧金屬星擁有行星是相當普遍的現象。HIP 13044之所以有名,是因為它是「從其他星系來的系外行星系統」,這顆星位在一道星流(stellar stream)中,而這道星流是約數十億年前被銀河系吞噬的另一星系的殘骸。(請參考天文新知2010-11-20 首度發現來自銀河系外的系外行星

和其他系外行星系統相較之下,HIP 11952不僅僅是極端缺乏金屬元素這項特點而已,還因為估計其年齡高達128億歲,成為目前已知年齡最大的行星系統;而我們宇宙的年齡,估計僅約137億年,所以這個行星系統應該在宇宙還處在幼兒期之時便已形成;而這也意味著,從宇宙誕生至今,任何時期都可能有行星系統形成。這就像在自家後院挖掘出重大考古遺跡一樣,讓眾人莫不興奮不已。這些天文學家打算繼續尋找並研究這類貧金屬恆星旁的行星系統,希望能讓行星形成理論更加完善,並能進一步瞭解生命的起源。

資料來源:A planetary system from the early Universe, [2012.03.27]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
有伴的老行星,生命能生存的機會也增高
臺北天文館_96
・2014/08/10 ・1261字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

10TrillionAD_2

美國華盛頓大學(University of Washington)天文學家Christa Van Laerhoven、 Rory Barnes和亞利桑納大學(University of Arizona)Richard Greenberg等人發現:年紀大了還有好友相伴是件很棒的事,對宇宙中的地球級老行星而言也一樣。

行星會隨著時間緩緩冷卻,熔融的核心逐漸固化,內部的產能活動逐漸平息,無法藉由控制二氧化碳含量來防止失控暖化或失控冷化,因而無法維持適合生物生存的環境。但Van Laerhoven等人發現:某些與地球大小差不多的古老行星,受到其外側鄰近行星伙伴的重力拉扯,能產生足夠的熱來防止行星內部冷卻,讓行星環境能留存生命的機會變大;這個過程稱為「潮汐加熱(tidal heating)」。

潮汐加熱並非新理論,木星衛星中的木衛一(埃歐,Io)和木衛二(歐羅巴,Europa)就受到木星重力的潮汐加熱作用,使它們內部被加熱,讓木衛一迄今仍有非常活躍的火山作用,木衛二則可能有個地下海洋。

這些天文學家將相同概念應用在系外行星系統的電腦模擬中,結果發現:在年老的低質量恆星的適居區中,以非圓形軌道公轉的年老地球級系外行星,也存有這種潮汐加熱效應。這類低質量恆星的質量僅約太陽的1/4而已,是以其適居帶也比較接近恆星本身。

-----廣告,請繼續往下閱讀-----

行星離母恆星愈近,所受到的恆星重力愈強,行星可能會被恆星重力拉扯變形成橄欖球狀;當離恆星愈遠,受到恆星重力愈弱,行星會「放鬆」成球形。這種接連不斷的鬆弛過程,可導致行星內部層狀結構彼此間互相摩擦而生熱。

之所以需要外側鄰近處有另一顆行星,是因為如此一來才能保持地球級行星的軌道為非圓形軌道,也才有打造適居行星的潛能。否則當地球級行星軌道接近圓形,繞母恆星公轉時受到的重力大小幾乎不變,行星形狀不會改變,也就沒有潮汐加熱的效應了。

因此,這些天文學家認為:一旦發現某顆又老又小的恆星的適居區中有地球級行星,那得趕緊在稍外側之處搜尋看看有沒有另一顆行星;如果有,那麼適居區中的這顆地球級行星擁有生命適存環境的機會就多了一些。

若老行星有它自己的板塊運動,再加上受到外側鄰近行星伙伴的潮汐加熱效應,或許可讓這樣的行星的表面成為宇宙中適居時間最長的世界之一。或許在遙遠的未來,當我們的太陽死亡之後,人類的子孫後裔就是生活在這類行星上。

-----廣告,請繼續往下閱讀-----

圖片說明:某顆繞行小一點的老恆星公轉的年老行星,受到外側鄰近的行星伙伴的重力影響,可能因潮汐加熱而產生足夠的熱能,即使它們的母恆星逐漸老去,無法在進行核融合反應來產生光與熱,年老行星依然能保持適合生命生存的環境。但這樣的行星看起來會是什麼模樣?Barnes解釋:如果其母恆星與太陽大小差不多,則當這顆恆星老去,表面溫度降低使得適居帶比較接近恆星本身,在適居帶中的行星所見的太陽,將比現今在地球上所見還大10倍;而畫面右上方的彎月狀天體,不是月亮,而是顆鄰近的土星級行星,正是這顆鄰近行星的潮汐加熱使行星表面還維持適居狀態。影像中所見的天空偏暗,這是因為這顆老恆星所發出的輻射中,藍光的比例偏低,所以行星大氣並不會因為散射藍光而讓天空看起來如地球一樣是淺藍的。

資料來源:Companion planets can increase old worlds’ chance at life, 2014.07.31, KLC

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!