Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

芝加哥即將成為「超導」都市

昱夫
・2014/07/19 ・687字 ・閱讀時間約 1 分鐘 ・SR值 565 ・九年級

chicagoplann
credit: ComEd

你可以想像把城市裡的電線換成超導體嗎?美國的電力供應商聯邦愛迪生(Commonwealth Edison, ComEd)宣布,他們將在芝加哥的部分市區裝設地下超導電纜!

在供電網複雜的城市裡,一旦遇上突發事件使部分電路失效,大量電流便會轉移向其他電路輸送,過量的電流會造成其他電路超載,進一步癱瘓整個供電網。著名的案例像是2012年,珊迪颶風侵襲美國東岸,對紐約這類大都市帶來莫大傷害,不止人員傷亡慘重,斷電造成的經濟損失更是無法估計。

為了解決這個問題,美國國土安全部(Department of Homeland Security, DHS)挹注經費給聯邦愛迪生公司,將在芝加哥現有的地下電纜旁加設超導電纜[1]。超導電纜比起一般電路,具備更高的電流負載量,當一般電路發生問題,超導電纜便可作為備用通路,負荷突然暴增的電流量,避免更大規模的斷電。此舉不只是能減緩因缺電帶來的經濟損失,在安全考量上,也能預防大都市在陷入斷電狀態而增加的犯罪死角。

計劃中使用的超導電纜是由美國超導公司(American Superconductor)發展的”Amperium”高溫超導線(超導轉換溫度:90K)[2],以合金(氧化釔鋇銅)層壓製成,比起相同尺寸的銅線,可以負荷將近其兩百倍的電流量[3]。不過超導電纜的成本也比一般導線來的高,礙於經費,此計劃目前只預計在芝加哥的部分區域配置。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

參考資料:

  1. ComEd to Partner with AMSC on Superconductor-based Resilient Electric Grid System
  2. Effect of Temperature and Magnetic Field on Amperium Wire Performance
  3. Amperium Brass Laminated Wire

資料來源:Chicago planning to lay superconducting cable to recent power outage in the Loop [July 17, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
人類終於實現室溫超導體之夢?常溫常壓超導體 LK-99——《科學月刊》
科學月刊_96
・2023/11/01 ・4262字 ・閱讀時間約 8 分鐘

  • 作者/王立民
    • 臺灣大學物理學系教授,主要研究領域包括超導物理、高溫超導電子元件等
  • Take Home Message
    • 今(2023)年 7 月 27 日,韓國研究團隊宣稱他們發現一種在常溫常壓下能產生超導體性質的材料「LK-99」。
    • 筆者團隊在實驗室中合成了 LK-99 樣品,並觀察到此樣品在常溫時呈現出抗磁性性質,但不具有超導體的完全抗磁特性。
    • LK-99 樣品具有半導體的導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,因此僅可被視為一種具抗磁性半導體材料。

一直以來,實現「室溫超導體」就是人類的夢想。今(2023)年 7 月 27 日,來自韓國的研究團隊宣稱發現一種在常溫常壓下能產生超導體性質的材料「LK-99」,隨即引起全世界的振奮與轟動。

此外,在理論計算上也顯示 LK-99 在適當的摻雜與晶格排列下,具有表現超導性的可能。

幾天後,美國勞倫斯柏克萊國家實驗室(Lawrence Berkeley National Laboratory, LBNL)的研究員格里芬(Sinéad Griffin)也指出,透過超級電腦的計算模擬顯示,當銅原子(copper, Cu)滲透到晶格中的路徑處於適當的條件和位置——特別是取代某一個鉛原子(lead, Pb)的特殊位置時——它們就能夠具有超導的共同特徵。

這是首篇證實 LK-99 理論上可行的論文,更帶動了能源科技公司美國超導體(American Superconductor Corporation, AMSC)的股價在收盤前暴漲。緊接著其他以密度泛函理論(density functional theory, DFT)計算 LK-99 的能帶結構也被提出,作者們普遍認為銅的摻雜引起了「從絕緣體到導體」的轉變,並大膽推斷 LK-99 可能具有超導特性。

-----廣告,請繼續往下閱讀-----

然而,各國間許多以實驗工作為主的研究團隊試圖復現韓國研究團隊 LK-99 的結果,卻未能證實 LK-99 是室溫超導體,國際團隊的實驗均顯示它僅是具抗磁性的半導體材料。

在各國紛紛設法復刻韓國團隊的研究時,筆者實驗室也立刻緊鑼密鼓加入,期望驗證這項被宣稱為「世紀大發現」的研究真實性。

超導的「迷」與「謎」

為了解這次室溫超導的真相,我們不得不先從現今超導的研究開始談起。

超導迷人之處不僅在於學術上的奇妙物理相變化,更在實際應用中展現出它獨特的性質——零電阻與完全抗磁性。這幾項特質在電力傳輸、交通、軍事、能源、量子科技等領域中,都具有相當多的應用價值。

-----廣告,請繼續往下閱讀-----

然而自 1911 年荷蘭物理學家歐尼斯(Heike Onnes)發現「汞」(mercury, Hg)在 4.2 K(Kelvin,克耳文)的溫度下會呈現超導特性,成為第一個超導材料以來,歷經 75 年人們發現的最高超導溫度僅有 23 K 的鈮鍺化合物(niobium-germanium)。

1986 年,瑞士物理學家米勒(Karl Alexander Müller)及德國物理學家比得諾茲(Johannes Georg Bednor)發現銅氧化合物超導體(又稱高溫超導體),並於 1987 年獲得諾貝爾物理獎。

同年,中央研究院院士吳茂昆與朱經武也發現超導溫度約 90K 的釔鋇銅氧(YBCO)超導體,它的超導溫度已突破應用液態氮 77 K 的溫度障壘。

而迄今為止,常壓下超導溫度最高的是在 1993 年發現的汞鋇鈣銅氧(HBCCO)超導體,約為 135 K。

-----廣告,請繼續往下閱讀-----

在理論的發展上,1957 年三位美國物理學家施里弗(John Schrieffer)、巴丁(John Bardeen)、古柏(Leon Cooper)提出 BCS 理論(Bardeen–Cooper–Schrieffer theory, BCS theory),解釋了出現於 1986 年以前的「低溫超導體」(或稱傳統超導體)的超導行為,例如同位素效應。然而公認能解釋高溫超導性的理論仍付之闕如,BCS 理論預期的超導上限溫度僅 40 K 左右。

多年來,人們也嘗試提高超導溫度,常用的手法是利用高壓,如在百萬大氣壓下一些含氫化合物將呈現近室溫的超導性,但這些方法其實對超導的理論或實驗研究不具任何意義。

因為根據基本理論,當外加壓力無限大時,超導臨界溫度(Tc)當然可以無限提高。所以具有重大意義的室溫超導,必須是在常壓下出現超導特性的材料,這也是韓國團隊宣稱 LK-99 為常溫常壓超導對科學界帶來震撼的原因。

如何檢驗材料的超導特性?

如前所述,超導具有零電阻與完全抗磁的特性,因此一項材料超導特性的驗證基本上需經由電阻與磁性的量測來確認(若加上比熱量測則會更完整)。以筆者實驗室裡用磁控濺鍍技術所成長的高溫超導 YBCO 薄膜為例,圖一(a)為量測此材料電阻率(ρ)比值隨溫度(ρ/ρ100 K− T)變化的關係(以 100 K 為基準),可以看到當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻(儀表偵測極限)狀態。

-----廣告,請繼續往下閱讀-----

而在磁性的量測,則利用超導量子干涉磁量儀(SQUID magnetometer)量測 YBCO 薄膜在零磁冷卻(zero-field cooling, ZFC)與磁冷卻(field-cooling, FC)下的磁化強度(magnetization, M)隨溫度變化的關係。

之所以需量測 ZFC 與 FC 曲線,是為了確認超導的磁通釘扎(magnetic flux pinning)效應,也就是磁力線在超導體內部低位能區的束縛狀態(可由 FC 曲線觀察此現象),而此效應也是所謂「第二類超導體」的特徵之一。

圖一、YBCO 薄膜電阻率的比值(a)與磁化率(b)隨溫度變化的關係。當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻狀態。圖/科學月刊(作者提供)

另外,若材料本身為完全無雜質存在的「百分之百超導體」,則它的磁化率(χ,定義為 M/H,H 為外加磁場強度)在 ZFC 低溫下則是完美的 -1 值(為超導體的邁斯納效應)。

相對地若材料本身只含有部分超導材料,混合了某些非超導材料,則 χ 雖仍為負值但卻會小於 1,且對應材料中超導成分所占的體積比率。因此透過磁性 ZFC、FC 的量測可以精確地定性與定量一項材料的超導特性。

-----廣告,請繼續往下閱讀-----

如圖一(b)所示,此為量測 YBCO 薄膜在外加磁場 5 Oe(oersted,奧斯特)下 ZFC、FC 磁化率 χ 隨溫度變化的關係。圖中可以看到 YBCO 薄膜在低溫 2 K 下 ZFC 的 χ 值為 -1,顯示它完美的抗磁性,且 ZFC 與 FC 曲線分離也顯示樣品中存在著磁通釘扎效應。

另一種大家熟知、直觀的超導現象即為磁浮實驗。圖一(a)左上角的照片便是利用筆者實驗室自行成長的大塊 YBCO 單晶(黑色),在液態氮冷卻下的磁浮實驗照片。

圖中可清楚看到磁鐵飄浮於 YBCO 晶體上方,但此處需強調的是——一項材料並不是具磁浮現象就可斷言為超導體,例如因具有高抗磁性而可產生磁浮現象的熱解碳(pyrolytic carbon),就是一種具磁浮現象但並非超導體的例子。因此,超導特性的檢驗仍須以嚴謹的電性與磁性測量為檢驗標準。

驗證 LK-99 是否為超導體

依據韓國團隊在論文中揭露的 LK-99(化學成分為 Pb9Cu(PO4)6O)合成方法,此材料的技術門檻不高,從原料到成品僅需數天即可完成。

-----廣告,請繼續往下閱讀-----

首先根據文獻,我們合成的 LK-99 樣品外觀與顏色與其他團隊結果無異(圖二右上角),圖二為合成 LK-99 樣品的 X 光繞射圖(X-ray diffractometer, XRD)。此結果同樣與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是其中出現銅-硫化合物的「雜相」,意味著在對 LK-99 的特性量測與下定論時需格外小心。

圖二、筆者實驗室合成的 LK-99 樣品外觀(右上)。LK-99 樣品的 X 光繞射圖與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是在合成方法中出現副產物硫化亞銅(Cu2S)的「雜相」。圖/科學月刊

圖三(a)為筆者實驗室合成的 LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫(約 300 K)下具抗磁性,但換算磁化率則極低,約為 10-4 左右。我們觀察到 LK-99 的 ZFC、FC 與韓國研究團隊公開的數據類似,也觀察到類似第二類超導體 ZFC 與 FC 曲線的分離,但這可能是因樣品中存在著具有磁通釘扎效應的雜質,才會造成它在低溫(10 K)以下呈現磁矩反轉成大於零的順磁性。

圖三(b)則為筆者實驗室製作的 LK-99 樣品電阻率隨溫度變化的關係圖,樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 觀察到電阻急遽降低的情形,類似韓國團隊宣稱的在約 378 K 出現超導零電阻現象。

然而,已有中國科學院研究團隊的實驗結果表明,此超導現象可能是由於合成方法產生的副產物硫化亞銅所引起,硫化亞銅已知會在 377 K 出現結構相轉變並伴隨電阻急遽下降。而 LK-99 樣品在以能量色散光譜(energy-dispersive-spectroscopy)元素分析後也能觀察到硫元素的存在,與 X 光繞射的結果吻合。

-----廣告,請繼續往下閱讀-----

因此,我們在實驗室中觀察到 LK-99 樣品在溫度約 390 K 時電阻急遽降低的現象,推論應為硫化亞銅所致,與超導無關。

圖三、樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 附近觀察到電阻急遽降低的情形。但此超導現象可能是由於合成方法產生的硫化亞銅所引起,與超導無關。(a)LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫下具抗磁性,但換算磁化率則極低。(b)LK-99 樣品電阻率隨溫度變化的關係圖。圖/科學月刊

並非室溫超導體的 LK-99

根據韓國團隊所發表的合成方法,我們複製出室溫超導 LK-99 樣品。在磁性測量部分,顯示 LK-99 在室溫為抗磁性物質,但不具超導的完全抗磁特性。

電性測量則顯示 LK-99 具有半導體導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,與超導零電阻行為無關。因此,LK-99 僅可被視為一種抗磁性半導體材料,此結論與許多國際團隊的結果一致。在今年 8 月中旬,知名期刊《自然》(Nature)甚至刊出一篇文章直指「LK-99 不是超導體」。

LK-99 的認證實驗仍有待各國(包含韓國國內)其他團隊持續進行,尋找室溫超導之路仍然漫長。

感謝臺灣大學及國科會在研究資源的支持,以及中興大學物理系教授吳秋賢、東海大學物理系教授王昌仁及時找到元素磷,使復現實驗得以立刻進行。

也感謝實驗室團員的努力,使實驗室得以早日揭露 LK-99 真相,相關結果將整理以期刊正式發表。

註解

在超導狀態下,第一類超導體在超導臨界磁場(Hc)以下時呈現完全抗磁狀態(邁斯納效應,Meissner effect)。第二類超導體則呈現兩個臨界磁場:下臨界磁場(Hc1)與上臨界磁場(Hc2),磁場在小於Hc1下為完全抗磁性的狀態;磁場介於 Hc1 與 Hc2 之間時,部分磁力線可以進入超導體內部,呈現非完全抗磁性的混合態。

  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3752 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
2

文字

分享

0
1
2
室溫超導體:開啟未來世界的鑰匙?
Castaly Fan (范欽淨)_96
・2023/09/26 ・3942字 ・閱讀時間約 8 分鐘

2023 年 7 月 23 日,來自南韓的研究團隊發表了《The First Room-Temperature Ambient-Pressure Superconductor》,宣示著世界上第一個室溫常壓超導體被成功發明。文章剛刊登到 arXiv 上,便掀起了全球各地的研究熱潮,不少媒體競相報導,科技市場、各種概念股也沸騰著。那麼,「室溫超導體」究竟是何方神聖?

超導體——能源損耗的救星?

相信大家對於這個詞並不陌生、卻又不甚熟悉。在中學時代理化課,我們接觸過「導體」這個詞;在關注科技業或者財經新聞時,可能接觸過「半導體」這個詞。而「超導體」(superconductor)究竟是什麼?

首先,「超導」是一種物理性質,在距今大概一百多年前便被發現。最早可以追溯到 1911 年,科學家發現:將汞(水銀)透過液態氦冷卻至 4.2 K(相當於 -268.95 °C)時,電阻將完全消失,這便是「超導現象」的開端。因此,「低溫」似乎是開啟新世界的一把鑰匙。而電阻消失有什麼幫助?

事實上,我們生活周遭的一切都是在無窮的損耗中進行的,以電子產品和通訊設備為例,這些電路元件與器材的運作源於電流,亦即導線內部電子的游動,但這個傳輸過程是耗能的,因為電子會不斷與導線內壁的原子碰觸、摩擦,從而消耗到不少能量,同時也意味著導線壽命會隨時間衰減。電路損耗的能量與電阻成正比(P = I²R),如果電阻消失了,那意味著損耗的電熱能也將消失,這將大幅提升電子在線路中的傳輸效率,從電力傳輸、通訊、發電機,到交通工具、家用電器等層面,使用效能都將顯著提升。

-----廣告,請繼續往下閱讀-----

到了 1933 年,物理學家發現:當物質低於臨界溫度變成超導體時,會具有「完全抗磁性」,也就是原本應該穿過物體本身的磁力線會巧妙地從旁「繞過」,這個現象被稱為「麥斯納效應」(Meissner effect)。這個效應帶來了超導體的「懸浮」性質,也就是在不用任何外力的接觸下,在足夠的低溫環境中、超導體便可以藉由抗磁性讓物體「懸浮」而起。我們知道,凡是有接觸便有摩擦力的產生,而摩擦力會損耗不少熱能,因此,如果可以不透過外力接觸而操控物體、就意味著沒有了摩擦力、也就可以不再擔心能量的損耗。

A diagram of a sphere and a line

Description automatically generated
麥斯納效應示意圖:當超導材料低於臨界溫度時(右),便可產生完全抗磁性。圖/Wikimedia

簡而言之,我們可以歸納「超導體」具有下列兩大特性:

  • 超導電性:在臨界溫度以下,電阻消失,意味著能量損耗可被降至最小值。
  • 完全抗磁性(麥斯納效應):在臨界溫度以下,磁力線被排斥於物體之外,意味著超導體可具有懸浮特性。

科幻電影中,那些飛快如光的磁浮列車、懸空而起的滑板、或者看似反重力的幽浮,這些都可以透過超導實現,因此,未來世界很可能充滿著各個類型的超導設備。即使在今日,相關的應用也已出現,比如日本便在數十年前研發出「超導磁浮列車」(SCMaglev),2015 年測試的最高時速即達到每小時 603 公里,刷新了地表上速度最快的列車紀錄。

室溫超導體——物理學的聖杯

然而,你或許也發現了,「超導體」並非唾手可得,至少需要「低溫」這個條件,又或者「高壓」 。

-----廣告,請繼續往下閱讀-----

而低溫不僅僅是冰點這樣的溫度,而是接近「絕對零度」(0 K,即 -273.15 °C) 的「極低溫」,因此,開發出「高溫超導體」成為了物理學家的重要目標,而這裡的「高溫」並不是讓水煮沸、會讓你燙傷的溫度,而是指高於絕對溫標 77 K(-196.2 °C,即液態氮的沸點)的溫度。這個對人類來說已是難以想像的低溫、對超導體而言卻是相對的高溫。截至 2023 年,人類所開發出最高溫的超導體是一種名為 lanthanum decahydride(十氫化鑭,LaH₁₀)的化合物,其臨界溫度是 250 K(-23 °C),在 200 GPa(相當於接近兩百萬大氣壓)的環境下才得以實現超導特性。

A diagram of a molecule

Description automatically generated
目前已知被證實的高溫超導體——「十氫化鑭」的化學結構。圖/acs.org

由此可知,要開發出「高溫超導體」實屬不易,發明出「室溫」、「常壓」的超導體基本上更是難上加難。且液態氦、液態氮這些低溫材料都是需要一定的成本,再加上要定溫保存更是不易,因此,倘若室溫超導體能被成功發明,這意味著不僅能大幅降低成本、還能大幅提升運作效能。

LK-99——睽違已久的聖杯、或是泡影?

回到文章一開始的新聞:2023 年 7 月下旬,韓國科學技術研究院 (KIST)以李石培、金智勳為主的研究團隊宣稱他們開發的材料「LK-99」在「室溫」、「常壓」環境下具有超導特性。這次的實驗紀錄號稱:他們的 LK-99 材料具有室溫超導特性,且上限可以到達 400 K(127 °C)這名副其實的「高溫」,並且是在正常大氣壓力下完成的——這遠遠勝過上一個高溫超導體 250 K、200 GPa 的紀錄;不僅如此,這個「LK-99」製作過程超乎想像地簡易,基本上待在實驗室不用三天就可以完成!擁有這麼良好特性、且製作過程又特別上手的超導材料如果被證實,勢必掀起第四次工業革命。

A diagram of a molecule

Description automatically generated
LK-99 的晶體結構側視圖。圖/https://arxiv.org/pdf/2307.16040.pdf

讓我們先來看看這個團隊在論文中的研究內容:首先,這個「LK-99」是近似於 Pb₉Cu(PO₄)₆O 的化合物,從化學式來看,可以發現鉛(Pb)、銅(Cu)、磷(P)這些都是不難到手的化學元素。而製作過程基本上就是研磨、混合、加熱、密封、抽真空等步驟,來回大概三天以內、就能生成 Pb₉Cu(PO₄)₆O,也就是 LK-99。根據他們的論文所述,這個晶體結構的形變會在材料內部產生應力,從而在特定截面產生「超導量子阱」(superconducting quantum well,SQW),致使材料產生了超導特性。這一系列過程都在常溫、常壓下進行的,且LK-99的超導特性可以維持到攝氏 127 度的高溫。

-----廣告,請繼續往下閱讀-----

簡單來說,這個 LK-99 的超導性質與溫度、壓力無關,而是肇因於晶體本身,特定的結構形變導致了物質產生超導現象。在他們發布的影片中,可以看見灰黑色的 LK-99「部分懸浮」在磁鐵上,這是他們用來佐證「完全抗磁性」(麥斯納效應) 的證據,之所以沒有完美地懸浮是因為晶體的雜質所導致;此外,他們也宣稱測量結果顯示零電阻率,也就是電阻完全消失的「超導電性」。當「零電阻率」、「完全抗磁性」這兩個條件充分具備後,LK-99 便可以被視為一個成功的室溫超導體。

A black piece of coal on a round metal container

Description automatically generated
影片中所顯示的 LK-99 具有部分懸浮的特性。圖/Wikimedia

在論文推出後,世界各地的學術機構與實驗室開始著手復現 LK-99 的製備過程、並競相發表研究成果,短短不到兩週時間,關於 LK-99 的復現實驗以及理論相關的研究已經有二十多項。然而,截至目前(2023 年 8 月 10 日)為止,尚未有成功復現、且通過同行審核被登上期刊的成果(論文發表在學術預印本網站 arXiv,一般需要通過同行審核才有機會被刊登在期刊)。實驗的成果不盡相同,有些證明了 LK-99 的懸浮與抗磁性、有些證明了零電阻率,但也有一些只有觀測到電阻的跳變、有些甚至沒有觀測到任何結果。

一個值得注意的部分是:即使韓國研究團隊的論文中宣稱他們觀測到 LK-99 的抗磁性,也有不少團隊復現 LK-99 的懸浮特性,然而,這並不能斷定它來自於「麥斯納效應」。事實上,不少磁性物質都會有「抗磁性」,這來自於微觀的分子磁矩;但超導體所具備的是由宏觀「超導電流」產生的「完全抗磁性」(注意:本文目前為止強調的都是「完全」抗磁性),甚至能因麥斯納效應產生的磁通量而「固定懸浮」在同一位置(即使將底座磁鐵 180 度反轉,它也應當平穩地懸浮在相同的角度——這背後是複雜的量子機制,而非磁場或靜力平衡的結果)。另一方面,即使一些實驗發現了該物質有「零電阻」的結果,但這並不全然等同於「零電阻率」,因為如果測量的尺寸過小、也是會有量測不出電阻的可能性。因此,目前大部分的研究指向大概是:LK-99 或許具有抗磁性,但並未被證實存在有明確的超導行為。

歷史借鏡與未來展望

事實上,物理學家對於室溫超導的聖杯之旅一直以來從未間斷。舉例而言,2020 年,美國羅徹斯特大學以迪亞斯(Ranga P. Dias)為首的團隊便號稱開發出了一種名為 carbonaceous sulfur hydride 的超導材料,利用鑽石生成,並在 288 K (15 °C)、267 GPa 的環境下具有超導特性,甚至登上《自然》期刊,但該論文在兩年後因為統計分析結果的瑕疵而被撤銷;2023 年初,該團隊再次宣稱開發出了以 lutetium hydride(氫化鑥)為主的超導材料,這次的結果更令人驚豔——在 294 K (23 °C)、1 GPa(約莫一萬大氣壓)下便具有超導特性。可惜的是,該論文後來也因為涉嫌抄襲與偽造數據而被撤下。

-----廣告,請繼續往下閱讀-----

科學最重要的一個評判標準就是它必須是「可證偽的」(falsifiable),對於從事實驗的科研人員而言,一個發明是否能被確立最關鍵的要素便在於實驗「可復現」(repeatable) 與否。如果一個實驗無法被成功復現,便很難說服學界接受研究成果。目前看來,南韓團隊所研發的 LK-99 可能無法算是成功的室溫超導體,不過我們也無需氣餒;儘管 LK-99 的超導行為目前尚未被成功復現與證實,但多少也給人們開闢一條研究蹊徑。

人類對於室溫超導體的探索從未間斷,物理學家們也嘗試以各種材料進行研發、希冀能儘早將璀璨的遠景付諸現實。雖然人們所憧憬的那種像科幻片中先進且便捷的「未來世界」可能不會在明天就來臨,但以當前科學日新月異的發展步調來說,也許已是指日可待。

A train on a track

Description automatically generated
超導的應用早已陸續浮現在生活中,日本的超高速列車 SCMaglev 便用到了低溫超導的磁浮特性。圖/scmaglev.jr
-----廣告,請繼續往下閱讀-----
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。