0

0
0

文字

分享

0
0
0

由混沌到秩序:螞蟻如何找到覓食的最佳路徑?

活躍星系核_96
・2014/05/27 ・1497字 ・閱讀時間約 3 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

credit: CC by screenpunk@flickr
credit: CC by screenpunk@flickr

編譯 / WuDaoer Tsai(任教淡江大學,研究複雜網路)

生物學家知道,單一螞蟻找尋食物是隨機的,然而群體螞蟻的覓食行為卻遠遠超越隨機模式。一份即將發表於《美國國家科學院期刊》(PNAS)的研究顯示:動物的移動行為,在某些時機點會由混沌的轉變成有秩序;而這樣的轉變是以不預期的自組方式所產生。了解螞蟻有助於分析類似的行為,例如:人如何在網際網路中瀏覽。

「蟻群有巢穴促使它們需要策略將找到的食物帶回去。」研究的作者,同時任職于北京郵電大學網絡與交換技術國家重點實驗室資訊安全中心,以及德國波茨坦氣候影響研究院的李麗香(Lixiang Li)說,「我們認為這一項因素,至今被大大地低估但實際上卻是主導它們行為的因素。」

-----廣告,請繼續往下閱讀-----

沿路遺留味道

中德兩國的研究團隊,將幾乎所有已知有關螞蟻覓食的行為,化成方程式跟演算法並送進電腦裡。團隊假設蟻群複雜的覓食行為分成三階段:一開始,尖兵螞蟻用混亂的遶圈圈方式;等到疲憊了,它們就回到巢穴裡休息與進食;若是其中有些螞蟻在巢穴附近發現食物,就攜帶一小份回到巢穴裡,同時沿路就遺留下費洛蒙化學訊號。接著,其他的螞蟻沿著這個味道去找到食物,並且也帶一小部份回到巢穴。此時,它們的合作作用依然很弱,因為沿著路徑的費洛蒙很稀少。但由於蟻群數量龐大,許多螞蟻會由不同的路徑找到食物並且帶回巢穴裡,因此會有許多不同的費洛蒙路線。

最終會出現最佳化路徑:因為費洛蒙具揮發性,較短路徑的味道會比較強烈。也因此更多的螞蟻會依循這較短的路徑,留下更多的費洛蒙,如此便產生了自我強化效率的效果。與持續混亂的螞蟻覓食行為比較,這樣花費較少的行徑時間與能量。

很重要的,研究人員發現,單一螞蟻的經驗成就了整體覓食的行為,這是之前研究所忽略的。較老的螞蟻對巢穴周遭較瞭解,對較年輕的螞蟻而言,與其說是有效貢獻於找尋食物,毋寧說這是個學習過程。

高度有效率的複雜網路

「單一螞蟻並不聰明,但集體的行為,我不得不認為,在某方面而言,是可以稱為有智慧的。」主持「跨領域觀念與方法」研究團隊的共同作者糾爾根.寇斯(Jurgen Kurths)如是說。「自我組織的原則早在魚群行為中就有發現,但蟻群的返家行為更形有趣。研究螞蟻覓食行為在生態學上有其實際重要性,此研究的作者主要是對了解非線性現象的基本樣貌有興趣。」

-----廣告,請繼續往下閱讀-----

「螞蟻群體形成一個有效率的複雜網路。」寇斯(Kurths)解釋,這是我們在許多自然與社會系統中均可發現。因此,研究蟻群所發展的數學模型,也適用於一些具有返家共同特徵但是非常不一樣的生物,例如信天翁。這項研究亦帶給各種領域-例如網頁服務演化與智慧傳遞系統-裡的人類行為模式一個新觀點。

資料來源:From chaos to order: How ants optimize food search. Phy.org [May 26, 2014]

研究文獻:Li, L., Peng, H., Kurths, J., Yang, Y., Schellnhuber, H.J. (2014): Chaos-order transition in foraging behavior of ants. Proceedings of the National Academy of Sciences, Early Edition: DOI: 10.1073/pnas.1407083111

—————————–

-----廣告,請繼續往下閱讀-----

延伸科學再發現@科技大觀園


更多內容也可以上科技大觀園搜尋「蟲」,或每週六上午8點收看民視53台科學再發現

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
1

文字

分享

0
1
1
《世紀帝國II:決定版》之蟻群爭霸?!
胡中行_96
・2023/10/12 ・3293字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

風靡全球的電玩系列《世紀帝國》(Age of Empires),問世將近 26 年,歷經多次新作發表與改版。[1]終於,有生物學家發現它的附加價值,妥善利用於學術研究:2023 年 8 月澳洲聯邦科學暨工業研究院(CSIRO)跟西澳大學(University of Western Australia)隆重巨獻,於美國《國家科學院院刊》(PNAS)正式發表[2, 3]──《世紀帝國II:決定版》(Age of Empires II: Definitive Edition)之蟻群爭霸!

當然,微軟 Xbox 沒有業配贊助,論文標題也不長這樣,而且研究設計浪費了遊戲豐富的功能,玩法單調純樸。[1, 2]不過,成果依然獲得 YouTube 電玩頻道的專業評析,與網友的熱烈討論。[4]

CSIRO 釋出的《世紀帝國 II:決定版》戰爭畫面。圖/參考資料 3(© CSIRO;Fair Use

遊戲模擬

《世紀帝國II:決定版》的場景編輯器,允許玩家在地圖上,改變環境特徵,並配置人力與建物。遊戲裡軍民單位的行為,由32,000行的程式所控制:在「if… then…」的語法下,如果某單位滿足特定條件,便會引發對應的行為。與此研究有關的部份,規範敵軍進入反應半徑時,軍事單位必須向前移動並發動攻擊,但是對於友軍或中立者則一概忽略。其中精銳條頓騎士(Elite Teutonic Knight)的反應半徑為3個格子;而雙手劍兵(Two-Handed Swordsman)則是 4 個。[2]利用這樣的設計,便可以激發戰爭。

研究團隊選擇「標準」的遊戲難度,先讓精銳條頓騎士跟雙手劍兵單挑,直到一方陣亡,總共 10 次。如此確定前者的強悍名不虛傳,無往不利。接著每次出 1 名精銳條頓騎士,跟 2、3、4…8 名雙手劍兵對打,即至1:4 的時候,都還是精銳條頓騎士勝出。最後,研究團隊做了下列設定:[2]

-----廣告,請繼續往下閱讀-----
  • 藍軍:玩家控制;紅軍的敵人;擁有最高生命值和最強攻擊力的精銳條頓騎士,共 9 名。[2]
  • 紅軍:電腦控制;藍軍的敵人;以 20、30、40…100 名戰力薄弱的雙手劍兵,組成數個步兵團。[2]
  • 綠軍:電腦控制;藍、紅兩軍分別的友軍。[2]
  • 簡單競技場:以城牆圍出一塊不會遭藍軍或紅軍攻擊,形狀為長方形的綠軍地盤,讓藍、紅兩軍於其中捉對廝殺。[2]
  • 複雜競技場:先圈出一個簡單競技場,然後用步兵單位無法跨越的水域,在裏頭隔出3條巷道。每條都有3名藍軍的精銳條頓騎士駐守,與巷道外紅軍的雙手劍兵團對峙。[2]

在玩家完全不操作的狀況下,藍軍與不同人數的紅軍,於簡單和複雜競技場交戰。每種排列組合打 10 場,總共 180 場戰役。每場都要打到有一方被完全殲滅,才算結束。簡而言之,就是以不同的人數和場地,不斷重演一模一樣的情境。[2]「大概是遊戲最無聊的玩法」,論文的第一作者 Samuel Lymbery 博士抱怨。[5]整體來說,當紅軍人數增加到一個程度,藍軍的勝算便開始下降,而場地差異則會影響達到此變化的門檻。[2]

藍、紅兩軍在簡單競技場中對戰。影/參考資料 3(© CSIRO;Fair Use

螞蟻實戰

2021年 7 到 10 月間,研究團隊去西澳伯斯丘(Perth Hills)地區的小鎮Chidlow,找澳洲肉蟻(Australian meat ants;學名Iridomyrmex purpureus[註]),還有外來的阿根廷蟻(Argentine ants;Linepithema humile)。從兩者分別的 6 個聚落抓工蟻,數量恰為實驗所需,且不會危害蟻群續存。帶回實驗室後,將來自同個蟻窩的關在一起,用水、蜂蜜和死蟋蟀飼養。[2]

澳洲肉蟻與阿根廷蟻的工蟻,先一對一「釘孤枝」(tìng-koo-ki[6]),直到其中一方死亡為止。凡是有打起來的場次,一律由澳洲肉蟻獲勝。接下來,研究團隊以類似電玩版的模式,調整蟻群的大小與所處的環境,讓兩軍對戰。[2]

  • 澳洲肉蟻:每場戰役徵召20隻。[2]
  • 阿根廷蟻:每次發派 5、10、20、60、100、150 或 200 隻。[2]
  • 簡單競技場:10 公升裝的塑膠容器。[2]
  • 複雜競技場:在塑膠容器裡,用木板區隔出數條巷道。[2]

各種排列組合,照原計劃是要打 7 次,排除有技術性問題的幾次,最後總共進行了 93 場戰役。這裡與遊戲模擬的差別,在於限制時間長度為 24 個鐘頭,結束後統計雙方死傷,而非等到單方全軍覆沒。不意外地,澳洲肉蟻總是勝利,然而傷亡數量卻隨情況而異。[2]

-----廣告,請繼續往下閱讀-----
巨大的澳洲肉蟻;弱小的阿根廷蟻。圖/參考資料 3(© Bruce Webber CSIRO;Fair Use

人類與螞蟻

螞蟻之類的社會性昆蟲打起來,規模與人類的傳統戰爭雷同。[3, 5]澳洲肉蟻對上阿根廷蟻,就像精銳條頓騎士之於雙手劍兵。無論是實戰或電玩,少數強者跟眾多弱者戰鬥時,強者於複雜競技場的死亡率較低,而在簡單競技場則較高。所以戰爭的結果,「取決於戰場的特性」,Samuel Lymbery博士表示。[3]

侵略性的外來螞蟻,會攻擊本土動物,並破壞農作物。[5]阿根廷蟻雖然體型渺小,卻在人為環境或受人類影響的棲地大量繁殖,[2, 3]而且是最猖獗的外來種之一,每年造成全球 1 千 9 百萬美金的經濟損失[2]這是因為人類整頓地面時,移除了植物和自然碎屑,於是創造出簡單競技場般,空曠、開放的戰鬥場域。[3]對真實世界的螞蟻來說,簡單競技場就是人行道和公園;而複雜競技場為樹叢或木屑等。[5]總之,原本自然環境中,具有體型優勢、擅長單挑的澳洲肉蟻,在人為的干擾下,變得容易死於敵軍圍毆。[3]人類務必把複雜的結構加回去,才能減少外來者造成的物種失衡。[3, 5]

YouTube電玩頻道推薦

澳洲這篇論文在美國《國家科學院院刊》上線後,擁有 36.9 萬追蹤者的 YouTube 電玩頻道 Spirit of the Law,發表了一支 12 分鐘,深入淺出的影片,摘要研究重點,還提到其中運用的蘭徹斯特法則(Lanchester’s laws)。不到1個月,已有將近 30 萬人次觀賞。[4]影片下方留言區的科學家與資深玩家,不僅熱議這個描述第一次世界大戰前的戰爭型態中,戰力、人數與戰爭結果關係的數學模型,也執著於論文不影響結論的計算錯誤。[2, 4]發覺迴響熱烈的 CSIRO,感謝 Spirit of the Law 之餘,更將影片節錄到自己的頻道上推廣。[7]

CSIRO 節錄 YouTube 頻道 Spirit of the Law,對此研究的介紹。影/參考資料 7
YouTube 電玩頻道 Spirit of the Law 介紹用《世紀帝國》模擬螞蟻行為的研究。影/參考資料 4

備註

研究團隊把 Iridomyrmex purpureus,叫作澳洲肉蟻(Australian meat ant)。[2]這種螞蟻的學名,有多個中文翻譯。臺灣大學昆蟲系名譽教授吳文哲導讀,彰化師範大學生物學系教授林宗岐審訂的《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》,稱其為紫虹琉璃蟻[8]

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Age of Empires. (26 OCT 2022) ‘Age of Empires – A Franchise History’. YouTube.
  2. Lymbery SJ, Webber BL, Didham RK. (2023) ‘Complex battlefields favor strong soldiers over large armies in social animal warfare’. Proceedings of the National Academy of Sciences of the United States of America, 12;120(37):e2217973120.
  3. Dewar I. (29 AUG 2023) ‘Ant wars: How native species can win the battle over invasive pests’. CSIRO, Australia.
  4. Spirit of the Law. (13 SEP 2023) ‘How AoE2 is helping scientists understand ants’. YouTube.
  5. Hughes M. (03 OCT 2023) ‘Scientists use Age of Empires computer game to simulate ant warfare’. ABC News, Australia.
  6. 釘孤枝」教育部臺灣閩南語常用詞辭典(Accessed on 06 OCT 2023)
  7. CSIRO. (24 SEP 2023) ‘Testing ant warefare models in Age of Empires II #ageofempires’. YouTube.
  8. Wilson EO, Hölldobler B.(05 SEP 2019)《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》貓頭鷹出版社
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
0

文字

分享

0
4
0
面對螞蟻的防疫政策,蟲生真菌該如何生存下來?
one minute biology
・2023/07/03 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

社交梳理以及令螞蟻聞風喪膽的黑殭菌

這三年來人類對抗新冠肺炎的防疫戰絕對是科學史上的重大突破,防疫的科學知識和技術出現突破性的成長。然而,不只人類通過合作對抗病原體,許多社會性的生物也會合作對抗病原。

以最著名的社會性昆蟲——螞蟻為例,牠們會幫助同伴清除身上的病原體真菌孢子,這種互相幫忙清理身體的行為在許多社會性的生物上都可以發現(例如獼猴、蜜蜂等),稱為社交梳理(Allogrooming)社交梳理是這些社會性動物對抗病原體的重要防線,可說是群居動物的獨特「防疫政策」。

正所謂道高一尺魔高一丈,致病病原體也不是吃素的,就像新冠肺炎病毒不斷有新的病毒株出現,感染螞蟻的蟲生真菌同樣也有一套對付螞蟻社交梳理的招數。今年發表在《Nature ecology and evolution》的論文就做實驗以了解:螞蟻的社交梳理行為是否會對黑殭菌(Metarhizium sp.)造成生存壓力,以及黑殭菌的應變策略進行探討。

黑殭菌屬的真菌屬於蟲生真菌的一類,如著名補品冬蟲夏草,具有感染寄生昆蟲並使其死亡的能力;因此,對於螞蟻來說,黑殭菌絕對是致命的敵人,若看到同伴身上有黑殭菌孢子一定要幫忙清除。

-----廣告,請繼續往下閱讀-----

螞蟻的「防疫政策」對黑殭菌造成生存壓力

首先,科學家想要透過研究「社交梳理行為是否會改變真菌群集組成」,來確認「社交梳理是否會對黑殭菌造成生存壓力」,因此使用六種不同菌株感染螞蟻,並將實驗分成「獨自面對真菌」以及「有兩名同伴照護」的組別,前者的螞蟻個體只能透過自身免疫力來抵抗真菌感染,後者則是有同伴幫忙清除有害真菌孢子。在感染真菌後的八天內,如果有螞蟻死亡,就會將這些孢子拿去感染新的螞蟻個體,並同樣分成兩組進行上述實驗,如此重複十個循環(圖一)。

圖一。實驗方法示意圖。圖/Stock et al., 2023

實驗結果顯示,社交梳理行為確實對真菌群集造成天擇壓力。獨自面對真菌的組別,在經過十個循環後出現較低的真菌多樣性(只剩兩株菌株),然而同伴照護組卻出現較高的真菌多樣性(還剩四株菌株),說明社交梳理行為足以影響菌株間的競爭。(圖二)。

既然螞蟻的「防疫政策」會對真菌造成影響,那麼真菌在螞蟻「防疫政策」的洗禮下,是否也會產生改變呢?答案是:會!

圖二、實驗結果顯示經社交梳理篩選出來的群集多樣性較高,代表社交梳理是足以改變真菌間競爭情形的天擇壓力。圖/Stock et al., 2023

黑殭菌利用「隱身術」騙過螞蟻的防疫政策

科學家首先針對真菌的兩項特徵進行研究:毒性(致死率)子代數量(產孢數)。研究結果顯示,經過社交免疫的篩選後,真菌的毒性有顯著的下降(圖三 a),然而產生子代的數量卻有所提升(圖三b)。

-----廣告,請繼續往下閱讀-----
圖三、經過社交免疫的選擇(同伴組)後真菌的毒性有顯著的下降,然而產生子代的數量卻有所提升。此外,相較於獨自組,同伴組的真菌孢子對社交免疫產生抵抗力,圖 a 中的兩條粉紅色長條說明經社交免疫篩選出來的孢子感染有無同伴的螞蟻致死率是一樣的。圖/Stock et al., 2023

更有趣的是,這些經過社交免疫篩選的真菌孢子竟提升對社交免疫的抵抗力!相較於獨自對抗真菌篩選出來的菌株,社交免疫篩選出的菌株再次感染單獨的螞蟻和有同伴照顧的螞蟻時,致死率竟沒有差異(圖三 a),這代表社交免疫已經失效了!

科學家猜想,這種現象源於螞蟻們不再好好清除同伴身上的致命孢子,實驗結果也確實顯示同伴螞蟻們似乎對於經社交免疫篩選出來的真菌孢子沒有敵意,因此大大降低清除這些孢子的意願(圖四 a)。與此同時,科學家還發現,經社交免疫篩選出的真菌孢子中「麥角固醇(Ergosterol)」的含量大幅減少,麥角固醇是真菌孢子中的重要組成成分,科學家懷疑螞蟻可能就是因為麥角固醇的幾少而無法辨識孢子。

最終的行為實驗結果支持了這個論點,若把麥角固醇塗在螞蟻身上可以吸引同伴前來清潔,構造相似的膽固醇則沒有類似效果(圖四c、d),因此,麥角固醇很可能就是吸引螞蟻進行社交梳理的標的!

圖四、圖 a 說明經社交免疫(同伴組)「訓練」出來的孢子能夠減少螞蟻幫忙同伴清除孢子的頻率;圖 c、d 則說明在螞蟻身上塗上麥角固醇會讓吸引同伴來社交梳理,構造與麥角固醇相似的膽固醇則無此效果。圖/Stock et al., 2023

不僅是本實驗的阿根廷蟻(Linepithema humile)被麥角固醇吸引並進行社交梳理,前人的研究發現另外一種社會性昆蟲——白蟻也具備類似的行為,科學家推測麥角固醇可能就是真菌避免被同伴螞蟻清除的關鍵。值得留意的是,麥角固醇的實驗結果可能也解釋了毒性下降以及後代數量提升,由於麥角固醇是真菌孢子重要的組成成分,因此若麥角固醇的含量改變將會導致資源的分配有所調整,毒性下降和後代數量提昇可能就是資源調整分配的結果。

-----廣告,請繼續往下閱讀-----

昆蟲的行為背後往往牽涉複雜的因素,麥角固醇是否真為引起螞蟻社交梳理行為的因素或是唯一因素仍需更進一步的證據支持才能夠確認。可以肯定的是,在螞蟻「防疫政策」的伺候下,黑殭菌正透過某種「隱身術」來躲避螞蟻的清除,這不由得令人想起 Jurassic Park (侏儸紀公園)中那句經典的台詞:

Life will find its way out.

參考文獻

  • Stock, M., Milutinović, B., Hoenigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., Narasimhan, M., Schmitt, T. & Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology & Evolution7(3), 450-460. https://doi.org/10.1038/s41559-023-01981-6
-----廣告,請繼續往下閱讀-----
one minute biology
2 篇文章 ・ 1 位粉絲
One minute biology 致力於分享新鮮有趣的生物研究和知識,希望能夠以淺顯易懂的方式讓讀者了解研究論文中的專業內容。IG專頁:oneminutebiology。

0

11
4

文字

分享

0
11
4
宇宙文明演化史(上):能量觀點下的先進文明
Castaly Fan (范欽淨)_96
・2023/06/26 ・3182字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。

但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

智慧生命的演進

誠如在這篇文章所提過的,碳基生命自發形成的機率極為渺小,從有機分子組合成蛋白質、基因序列、細胞、再到個體的行程,這個機率相當於「一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747」那樣渺茫,更何況是演化成像人類這樣的「智慧生命」。

我們不僅僅具有生物體的基本特徵,還具有思考能力、邏輯、記憶力、甚至是預測與規劃未來的能力,這些可以說是人類與其他生命體最與眾不同之所在。人類之所以成為「智慧生命」,便是因為擁有了自己的語言、文字,使資訊得以保留並傳承。回溯到百萬年前,從演化論的角度來看,當時人類與其他靈長類動物差異並不大;然而,我們的老祖先發現了「火」,並且懂得如何生成並且控制「火」,使得我們不再像其他動物那樣直接生食獵物;另一方面,我們開始懂得用遮羞布、乃至於之後縫製衣服。

-----廣告,請繼續往下閱讀-----

此外,我們能表達自己的情緒,能輕易地展現喜怒哀樂溝通,進行交際活動——這些都是人類得以成為智慧生命的原理。

順帶一提,根據物理學家加來道雄(Michio Kaku)所提出的「穴居人原理」(caveman principle),我們人類依然存有百萬年前老祖宗們「原始慾望」的影子——換句話說,數十萬年來人類雖然不斷演化,然而我們的人格依然保有原始穴居人的基因本質。舉例而言:即使有先進的電腦把文件處理完善,我們仍習慣把文件影印成紙本,之所以如此,係因原始人類捕獵動物時要求「獵殺證明」,習慣取信於親眼所見的事實。

同理,我們傾向於參與音樂會或去電影院體驗現場氛圍,而非一味觀賞電子螢幕前的動態;我們習慣社交與打扮,因此多數重要聚會並不容易被虛擬會議所取代;而在古代社會,小道消息的流通會幫助某些人們知悉高層的行動,因而扮演著一定程度重要性——而這也呼應了我們周遭充斥著娛樂與八卦的報刊,畢竟這些事物總會激起人性深處的好奇心。另一方面,穴居人法則似乎也意味著藝術、娛樂並不會因為科技發展而消失,因為這些事物能滿足人類的需求與愉悅,而這並非科技所能取而代之的。

根據穴居人原理,我們依然保有原始人類的慾望。圖/Mrs J’s science

回歸根本,可以發現,身為智慧生命,必然要有「視力」的存在、而非像螞蟻那樣透過觸角溝通,包含情緒的表達、語言的交流,這方面可以歸功於「大腦」的演化;再者,人類的「腳趾」的演化也是關鍵,這使得人類得以直立行走、改變對世界的視角與行動;此外,「前肢可握物」也扮演著重要角色,亦即靈活的手指——這使得人類可以精準地操作物件、製造工具。

-----廣告,請繼續往下閱讀-----

先進文明的分級

因此,我們假定這些智慧生命都擁有這些生理構造與功能,他們可以溝通、可以發明器物。那麼,有沒有一個指標能告訴我們一個「文明」究竟能多發達?

1964 年,蘇聯科學家卡爾達肖夫(Nikolai Kardashev)提出了一個度量文明先進程度的指標——「卡爾達肖夫指數」(Kardashev Scale)。經由天文學家卡爾.薩根(Carl Sagan)修正過後,可以歸結為下列公式:

其中 K 代表卡爾達肖夫指數,P 代表文明所消耗的總能量。基本上,我們可以將文明依據「駕馭能量」的量級區分成三大類型:

  1. I 型文明(K=1)
    該文明能駕馭 10¹⁶ W 的能量,相當於掌握所處行星的能量,因此又稱「行星文明」。這類型的文明可以控制天氣、調節海洋、並且到地底深處採礦,徹底運用星球資源;並且,這一類文明將能任意造訪附近行星,並在後期發展出接近光速的太空旅行。
  2. II 型文明(K=2)
    該文明能駕馭 10²⁶ W 的能量,相當於掌握所處恆星系統的能量,因此又稱「恆星文明」或「星際文明」。這類型的文明能夠透過戴森球(參見下文)或相關科技、徹底利用恆星系統的能量;他們可在各個行星、恆星之間任意穿梭,並且相繼朝往其他恆星系統殖民。
  3. III 型文明(K=3)
    該文明能駕馭 10³⁶ W 的能量,相當於掌握所處星系的能量,因此又稱「星系文明」。這類型的文明不再受限於附近的恆星系統,他們將能夠隨心所欲駕馭整個星系、甚至宇宙尺度級別的能量,並可以在星系之間來去自如;他們甚至已熟悉時空物理、得以透過蟲洞或先進技術穿越時空。
卡爾達肖夫指數示意圖,由左而右分別是:行星文明(I 型)、恆星文明(II 型)、星系文明(III 型)。圖/http://www.maximusveritas.com/wp-content/uploads/2016/06/

作為宇宙文明的分級,文明所駕馭的總能量可以視為一個標竿。宇宙中的能量是無所不在、甚至可以說是取之不盡用之不竭的。因此,能妥善利用這些能量到什麼程度,便可以視為文明「先進與否」的標準。當然,還有一些人把這列表往下延伸,諸如宇宙文明(IV 型)、多重宇宙文明(V 型)、神靈文明(VI 型)、未知文明(VII 型)等等——不過這些級別距離目前人類還算是遙不可及,我們甚至無法保證在宇宙 137 億這年齡下是否已有這麼先進的文明誕生。

-----廣告,請繼續往下閱讀-----

就目前而言,顯然,人類縱使歷經工業革命、資訊革命,也開發出原子能、得以進行太空探索——但似乎尚未能被列入其中之一——我們尚未有能力操控天氣、就連地底結構也都是透過震波才得以探知的。那麼,人類目前究竟處在哪一階段?讓我們簡單計算一下:根據世界能源消耗量的統計,截至 2021 年底,人類所消耗的能量約為 176,431 TWh(百萬兆瓦時),相當於 20.14 TW(百萬兆瓦),代入卡爾達肖夫指數公式:

可以直接得出卡爾達肖夫指數 K≈0.73 ——因此,人類目前約是落在「0.73 型文明」,依然位在「第零型文明」的階段。

目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。

當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。

-----廣告,請繼續往下閱讀-----
1800 年代至 2021 年的世界能源消耗總量:目前人類消耗能源仍以化石燃料為多數。圖/our world in data

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
-----廣告,請繼續往下閱讀-----
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。