Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

由混沌到秩序:螞蟻如何找到覓食的最佳路徑?

活躍星系核_96
・2014/05/27 ・1497字 ・閱讀時間約 3 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

credit: CC by screenpunk@flickr
credit: CC by screenpunk@flickr

編譯 / WuDaoer Tsai(任教淡江大學,研究複雜網路)

生物學家知道,單一螞蟻找尋食物是隨機的,然而群體螞蟻的覓食行為卻遠遠超越隨機模式。一份即將發表於《美國國家科學院期刊》(PNAS)的研究顯示:動物的移動行為,在某些時機點會由混沌的轉變成有秩序;而這樣的轉變是以不預期的自組方式所產生。了解螞蟻有助於分析類似的行為,例如:人如何在網際網路中瀏覽。

「蟻群有巢穴促使它們需要策略將找到的食物帶回去。」研究的作者,同時任職于北京郵電大學網絡與交換技術國家重點實驗室資訊安全中心,以及德國波茨坦氣候影響研究院的李麗香(Lixiang Li)說,「我們認為這一項因素,至今被大大地低估但實際上卻是主導它們行為的因素。」

-----廣告,請繼續往下閱讀-----

沿路遺留味道

中德兩國的研究團隊,將幾乎所有已知有關螞蟻覓食的行為,化成方程式跟演算法並送進電腦裡。團隊假設蟻群複雜的覓食行為分成三階段:一開始,尖兵螞蟻用混亂的遶圈圈方式;等到疲憊了,它們就回到巢穴裡休息與進食;若是其中有些螞蟻在巢穴附近發現食物,就攜帶一小份回到巢穴裡,同時沿路就遺留下費洛蒙化學訊號。接著,其他的螞蟻沿著這個味道去找到食物,並且也帶一小部份回到巢穴。此時,它們的合作作用依然很弱,因為沿著路徑的費洛蒙很稀少。但由於蟻群數量龐大,許多螞蟻會由不同的路徑找到食物並且帶回巢穴裡,因此會有許多不同的費洛蒙路線。

最終會出現最佳化路徑:因為費洛蒙具揮發性,較短路徑的味道會比較強烈。也因此更多的螞蟻會依循這較短的路徑,留下更多的費洛蒙,如此便產生了自我強化效率的效果。與持續混亂的螞蟻覓食行為比較,這樣花費較少的行徑時間與能量。

很重要的,研究人員發現,單一螞蟻的經驗成就了整體覓食的行為,這是之前研究所忽略的。較老的螞蟻對巢穴周遭較瞭解,對較年輕的螞蟻而言,與其說是有效貢獻於找尋食物,毋寧說這是個學習過程。

高度有效率的複雜網路

「單一螞蟻並不聰明,但集體的行為,我不得不認為,在某方面而言,是可以稱為有智慧的。」主持「跨領域觀念與方法」研究團隊的共同作者糾爾根.寇斯(Jurgen Kurths)如是說。「自我組織的原則早在魚群行為中就有發現,但蟻群的返家行為更形有趣。研究螞蟻覓食行為在生態學上有其實際重要性,此研究的作者主要是對了解非線性現象的基本樣貌有興趣。」

-----廣告,請繼續往下閱讀-----

「螞蟻群體形成一個有效率的複雜網路。」寇斯(Kurths)解釋,這是我們在許多自然與社會系統中均可發現。因此,研究蟻群所發展的數學模型,也適用於一些具有返家共同特徵但是非常不一樣的生物,例如信天翁。這項研究亦帶給各種領域-例如網頁服務演化與智慧傳遞系統-裡的人類行為模式一個新觀點。

資料來源:From chaos to order: How ants optimize food search. Phy.org [May 26, 2014]

研究文獻:Li, L., Peng, H., Kurths, J., Yang, Y., Schellnhuber, H.J. (2014): Chaos-order transition in foraging behavior of ants. Proceedings of the National Academy of Sciences, Early Edition: DOI: 10.1073/pnas.1407083111

—————————–

-----廣告,請繼續往下閱讀-----

延伸科學再發現@科技大觀園


更多內容也可以上科技大觀園搜尋「蟲」,或每週六上午8點收看民視53台科學再發現

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
《世紀帝國II:決定版》之蟻群爭霸?!
胡中行_96
・2023/10/12 ・3293字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

風靡全球的電玩系列《世紀帝國》(Age of Empires),問世將近 26 年,歷經多次新作發表與改版。[1]終於,有生物學家發現它的附加價值,妥善利用於學術研究:2023 年 8 月澳洲聯邦科學暨工業研究院(CSIRO)跟西澳大學(University of Western Australia)隆重巨獻,於美國《國家科學院院刊》(PNAS)正式發表[2, 3]──《世紀帝國II:決定版》(Age of Empires II: Definitive Edition)之蟻群爭霸!

當然,微軟 Xbox 沒有業配贊助,論文標題也不長這樣,而且研究設計浪費了遊戲豐富的功能,玩法單調純樸。[1, 2]不過,成果依然獲得 YouTube 電玩頻道的專業評析,與網友的熱烈討論。[4]

CSIRO 釋出的《世紀帝國 II:決定版》戰爭畫面。圖/參考資料 3(© CSIRO;Fair Use

遊戲模擬

《世紀帝國II:決定版》的場景編輯器,允許玩家在地圖上,改變環境特徵,並配置人力與建物。遊戲裡軍民單位的行為,由32,000行的程式所控制:在「if… then…」的語法下,如果某單位滿足特定條件,便會引發對應的行為。與此研究有關的部份,規範敵軍進入反應半徑時,軍事單位必須向前移動並發動攻擊,但是對於友軍或中立者則一概忽略。其中精銳條頓騎士(Elite Teutonic Knight)的反應半徑為3個格子;而雙手劍兵(Two-Handed Swordsman)則是 4 個。[2]利用這樣的設計,便可以激發戰爭。

研究團隊選擇「標準」的遊戲難度,先讓精銳條頓騎士跟雙手劍兵單挑,直到一方陣亡,總共 10 次。如此確定前者的強悍名不虛傳,無往不利。接著每次出 1 名精銳條頓騎士,跟 2、3、4…8 名雙手劍兵對打,即至1:4 的時候,都還是精銳條頓騎士勝出。最後,研究團隊做了下列設定:[2]

-----廣告,請繼續往下閱讀-----
  • 藍軍:玩家控制;紅軍的敵人;擁有最高生命值和最強攻擊力的精銳條頓騎士,共 9 名。[2]
  • 紅軍:電腦控制;藍軍的敵人;以 20、30、40…100 名戰力薄弱的雙手劍兵,組成數個步兵團。[2]
  • 綠軍:電腦控制;藍、紅兩軍分別的友軍。[2]
  • 簡單競技場:以城牆圍出一塊不會遭藍軍或紅軍攻擊,形狀為長方形的綠軍地盤,讓藍、紅兩軍於其中捉對廝殺。[2]
  • 複雜競技場:先圈出一個簡單競技場,然後用步兵單位無法跨越的水域,在裏頭隔出3條巷道。每條都有3名藍軍的精銳條頓騎士駐守,與巷道外紅軍的雙手劍兵團對峙。[2]

在玩家完全不操作的狀況下,藍軍與不同人數的紅軍,於簡單和複雜競技場交戰。每種排列組合打 10 場,總共 180 場戰役。每場都要打到有一方被完全殲滅,才算結束。簡而言之,就是以不同的人數和場地,不斷重演一模一樣的情境。[2]「大概是遊戲最無聊的玩法」,論文的第一作者 Samuel Lymbery 博士抱怨。[5]整體來說,當紅軍人數增加到一個程度,藍軍的勝算便開始下降,而場地差異則會影響達到此變化的門檻。[2]

藍、紅兩軍在簡單競技場中對戰。影/參考資料 3(© CSIRO;Fair Use

螞蟻實戰

2021年 7 到 10 月間,研究團隊去西澳伯斯丘(Perth Hills)地區的小鎮Chidlow,找澳洲肉蟻(Australian meat ants;學名Iridomyrmex purpureus[註]),還有外來的阿根廷蟻(Argentine ants;Linepithema humile)。從兩者分別的 6 個聚落抓工蟻,數量恰為實驗所需,且不會危害蟻群續存。帶回實驗室後,將來自同個蟻窩的關在一起,用水、蜂蜜和死蟋蟀飼養。[2]

澳洲肉蟻與阿根廷蟻的工蟻,先一對一「釘孤枝」(tìng-koo-ki[6]),直到其中一方死亡為止。凡是有打起來的場次,一律由澳洲肉蟻獲勝。接下來,研究團隊以類似電玩版的模式,調整蟻群的大小與所處的環境,讓兩軍對戰。[2]

  • 澳洲肉蟻:每場戰役徵召20隻。[2]
  • 阿根廷蟻:每次發派 5、10、20、60、100、150 或 200 隻。[2]
  • 簡單競技場:10 公升裝的塑膠容器。[2]
  • 複雜競技場:在塑膠容器裡,用木板區隔出數條巷道。[2]

各種排列組合,照原計劃是要打 7 次,排除有技術性問題的幾次,最後總共進行了 93 場戰役。這裡與遊戲模擬的差別,在於限制時間長度為 24 個鐘頭,結束後統計雙方死傷,而非等到單方全軍覆沒。不意外地,澳洲肉蟻總是勝利,然而傷亡數量卻隨情況而異。[2]

-----廣告,請繼續往下閱讀-----
巨大的澳洲肉蟻;弱小的阿根廷蟻。圖/參考資料 3(© Bruce Webber CSIRO;Fair Use

人類與螞蟻

螞蟻之類的社會性昆蟲打起來,規模與人類的傳統戰爭雷同。[3, 5]澳洲肉蟻對上阿根廷蟻,就像精銳條頓騎士之於雙手劍兵。無論是實戰或電玩,少數強者跟眾多弱者戰鬥時,強者於複雜競技場的死亡率較低,而在簡單競技場則較高。所以戰爭的結果,「取決於戰場的特性」,Samuel Lymbery博士表示。[3]

侵略性的外來螞蟻,會攻擊本土動物,並破壞農作物。[5]阿根廷蟻雖然體型渺小,卻在人為環境或受人類影響的棲地大量繁殖,[2, 3]而且是最猖獗的外來種之一,每年造成全球 1 千 9 百萬美金的經濟損失[2]這是因為人類整頓地面時,移除了植物和自然碎屑,於是創造出簡單競技場般,空曠、開放的戰鬥場域。[3]對真實世界的螞蟻來說,簡單競技場就是人行道和公園;而複雜競技場為樹叢或木屑等。[5]總之,原本自然環境中,具有體型優勢、擅長單挑的澳洲肉蟻,在人為的干擾下,變得容易死於敵軍圍毆。[3]人類務必把複雜的結構加回去,才能減少外來者造成的物種失衡。[3, 5]

YouTube電玩頻道推薦

澳洲這篇論文在美國《國家科學院院刊》上線後,擁有 36.9 萬追蹤者的 YouTube 電玩頻道 Spirit of the Law,發表了一支 12 分鐘,深入淺出的影片,摘要研究重點,還提到其中運用的蘭徹斯特法則(Lanchester’s laws)。不到1個月,已有將近 30 萬人次觀賞。[4]影片下方留言區的科學家與資深玩家,不僅熱議這個描述第一次世界大戰前的戰爭型態中,戰力、人數與戰爭結果關係的數學模型,也執著於論文不影響結論的計算錯誤。[2, 4]發覺迴響熱烈的 CSIRO,感謝 Spirit of the Law 之餘,更將影片節錄到自己的頻道上推廣。[7]

CSIRO 節錄 YouTube 頻道 Spirit of the Law,對此研究的介紹。影/參考資料 7
YouTube 電玩頻道 Spirit of the Law 介紹用《世紀帝國》模擬螞蟻行為的研究。影/參考資料 4

備註

研究團隊把 Iridomyrmex purpureus,叫作澳洲肉蟻(Australian meat ant)。[2]這種螞蟻的學名,有多個中文翻譯。臺灣大學昆蟲系名譽教授吳文哲導讀,彰化師範大學生物學系教授林宗岐審訂的《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》,稱其為紫虹琉璃蟻[8]

-----廣告,請繼續往下閱讀-----

  

  1. Age of Empires. (26 OCT 2022) ‘Age of Empires – A Franchise History’. YouTube.
  2. Lymbery SJ, Webber BL, Didham RK. (2023) ‘Complex battlefields favor strong soldiers over large armies in social animal warfare’. Proceedings of the National Academy of Sciences of the United States of America, 12;120(37):e2217973120.
  3. Dewar I. (29 AUG 2023) ‘Ant wars: How native species can win the battle over invasive pests’. CSIRO, Australia.
  4. Spirit of the Law. (13 SEP 2023) ‘How AoE2 is helping scientists understand ants’. YouTube.
  5. Hughes M. (03 OCT 2023) ‘Scientists use Age of Empires computer game to simulate ant warfare’. ABC News, Australia.
  6. 釘孤枝」教育部臺灣閩南語常用詞辭典(Accessed on 06 OCT 2023)
  7. CSIRO. (24 SEP 2023) ‘Testing ant warefare models in Age of Empires II #ageofempires’. YouTube.
  8. Wilson EO, Hölldobler B.(05 SEP 2019)《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》貓頭鷹出版社
-----廣告,請繼續往下閱讀-----

0

4
0

文字

分享

0
4
0
面對螞蟻的防疫政策,蟲生真菌該如何生存下來?
one minute biology
・2023/07/03 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

社交梳理以及令螞蟻聞風喪膽的黑殭菌

這三年來人類對抗新冠肺炎的防疫戰絕對是科學史上的重大突破,防疫的科學知識和技術出現突破性的成長。然而,不只人類通過合作對抗病原體,許多社會性的生物也會合作對抗病原。

以最著名的社會性昆蟲——螞蟻為例,牠們會幫助同伴清除身上的病原體真菌孢子,這種互相幫忙清理身體的行為在許多社會性的生物上都可以發現(例如獼猴、蜜蜂等),稱為社交梳理(Allogrooming)社交梳理是這些社會性動物對抗病原體的重要防線,可說是群居動物的獨特「防疫政策」。

正所謂道高一尺魔高一丈,致病病原體也不是吃素的,就像新冠肺炎病毒不斷有新的病毒株出現,感染螞蟻的蟲生真菌同樣也有一套對付螞蟻社交梳理的招數。今年發表在《Nature ecology and evolution》的論文就做實驗以了解:螞蟻的社交梳理行為是否會對黑殭菌(Metarhizium sp.)造成生存壓力,以及黑殭菌的應變策略進行探討。

黑殭菌屬的真菌屬於蟲生真菌的一類,如著名補品冬蟲夏草,具有感染寄生昆蟲並使其死亡的能力;因此,對於螞蟻來說,黑殭菌絕對是致命的敵人,若看到同伴身上有黑殭菌孢子一定要幫忙清除。

-----廣告,請繼續往下閱讀-----

螞蟻的「防疫政策」對黑殭菌造成生存壓力

首先,科學家想要透過研究「社交梳理行為是否會改變真菌群集組成」,來確認「社交梳理是否會對黑殭菌造成生存壓力」,因此使用六種不同菌株感染螞蟻,並將實驗分成「獨自面對真菌」以及「有兩名同伴照護」的組別,前者的螞蟻個體只能透過自身免疫力來抵抗真菌感染,後者則是有同伴幫忙清除有害真菌孢子。在感染真菌後的八天內,如果有螞蟻死亡,就會將這些孢子拿去感染新的螞蟻個體,並同樣分成兩組進行上述實驗,如此重複十個循環(圖一)。

圖一。實驗方法示意圖。圖/Stock et al., 2023

實驗結果顯示,社交梳理行為確實對真菌群集造成天擇壓力。獨自面對真菌的組別,在經過十個循環後出現較低的真菌多樣性(只剩兩株菌株),然而同伴照護組卻出現較高的真菌多樣性(還剩四株菌株),說明社交梳理行為足以影響菌株間的競爭。(圖二)。

既然螞蟻的「防疫政策」會對真菌造成影響,那麼真菌在螞蟻「防疫政策」的洗禮下,是否也會產生改變呢?答案是:會!

圖二、實驗結果顯示經社交梳理篩選出來的群集多樣性較高,代表社交梳理是足以改變真菌間競爭情形的天擇壓力。圖/Stock et al., 2023

黑殭菌利用「隱身術」騙過螞蟻的防疫政策

科學家首先針對真菌的兩項特徵進行研究:毒性(致死率)子代數量(產孢數)。研究結果顯示,經過社交免疫的篩選後,真菌的毒性有顯著的下降(圖三 a),然而產生子代的數量卻有所提升(圖三b)。

-----廣告,請繼續往下閱讀-----
圖三、經過社交免疫的選擇(同伴組)後真菌的毒性有顯著的下降,然而產生子代的數量卻有所提升。此外,相較於獨自組,同伴組的真菌孢子對社交免疫產生抵抗力,圖 a 中的兩條粉紅色長條說明經社交免疫篩選出來的孢子感染有無同伴的螞蟻致死率是一樣的。圖/Stock et al., 2023

更有趣的是,這些經過社交免疫篩選的真菌孢子竟提升對社交免疫的抵抗力!相較於獨自對抗真菌篩選出來的菌株,社交免疫篩選出的菌株再次感染單獨的螞蟻和有同伴照顧的螞蟻時,致死率竟沒有差異(圖三 a),這代表社交免疫已經失效了!

科學家猜想,這種現象源於螞蟻們不再好好清除同伴身上的致命孢子,實驗結果也確實顯示同伴螞蟻們似乎對於經社交免疫篩選出來的真菌孢子沒有敵意,因此大大降低清除這些孢子的意願(圖四 a)。與此同時,科學家還發現,經社交免疫篩選出的真菌孢子中「麥角固醇(Ergosterol)」的含量大幅減少,麥角固醇是真菌孢子中的重要組成成分,科學家懷疑螞蟻可能就是因為麥角固醇的幾少而無法辨識孢子。

最終的行為實驗結果支持了這個論點,若把麥角固醇塗在螞蟻身上可以吸引同伴前來清潔,構造相似的膽固醇則沒有類似效果(圖四c、d),因此,麥角固醇很可能就是吸引螞蟻進行社交梳理的標的!

圖四、圖 a 說明經社交免疫(同伴組)「訓練」出來的孢子能夠減少螞蟻幫忙同伴清除孢子的頻率;圖 c、d 則說明在螞蟻身上塗上麥角固醇會讓吸引同伴來社交梳理,構造與麥角固醇相似的膽固醇則無此效果。圖/Stock et al., 2023

不僅是本實驗的阿根廷蟻(Linepithema humile)被麥角固醇吸引並進行社交梳理,前人的研究發現另外一種社會性昆蟲——白蟻也具備類似的行為,科學家推測麥角固醇可能就是真菌避免被同伴螞蟻清除的關鍵。值得留意的是,麥角固醇的實驗結果可能也解釋了毒性下降以及後代數量提升,由於麥角固醇是真菌孢子重要的組成成分,因此若麥角固醇的含量改變將會導致資源的分配有所調整,毒性下降和後代數量提昇可能就是資源調整分配的結果。

-----廣告,請繼續往下閱讀-----

昆蟲的行為背後往往牽涉複雜的因素,麥角固醇是否真為引起螞蟻社交梳理行為的因素或是唯一因素仍需更進一步的證據支持才能夠確認。可以肯定的是,在螞蟻「防疫政策」的伺候下,黑殭菌正透過某種「隱身術」來躲避螞蟻的清除,這不由得令人想起 Jurassic Park (侏儸紀公園)中那句經典的台詞:

Life will find its way out.

  • Stock, M., Milutinović, B., Hoenigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., Narasimhan, M., Schmitt, T. & Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology & Evolution7(3), 450-460. https://doi.org/10.1038/s41559-023-01981-6
-----廣告,請繼續往下閱讀-----