0

0
0

文字

分享

0
0
0

韋伯太空望遠鏡對人眼健康有益

臺北天文館_96
・2011/08/09 ・1648字 ・閱讀時間約 3 分鐘 ・SR值 469 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

一套Scanning Shack Hartmann System掃描系統,簡稱”SSHS”,為兩組成對的一個大型鏡面測試機臺,用來量測詹姆斯韋伯太空紅外望遠鏡(簡稱: JWST)的鏡面平整度。在執行SSHS計畫專案過程中,波前偵測的技術重大突破,也大幅提升眼科儀器雷射光束的對齊精確度。圖片來源:雅培醫療光學公司

最先進的詹姆斯韋伯紅外太空望遠鏡(以下簡稱JWST或「韋伯望遠鏡」)雖然是為了天文研究用途所打造,不過,相關的技術成果已證明對人體眼睛健康有益,施工建造仍在進行,最先享受到這項尖端科技的領域卻是:眼科。

據雅培醫療光學公司研究人員表示,韋伯望遠鏡不僅在天文學、鏡面加工等領域開發出最新科技,還對於人體眼球測量、眼部疾病診斷,也帶來許多改良,未來還有機會使眼科手術精確度大增。

韋伯望遠鏡是美國 NASA 所建造的有史以來科學貢獻力道最強大的望遠鏡 – 性能比哈柏太空望遠鏡更強大 100 倍。我們將用它來發現:宇宙早期,第一個星系如何形成?然後便能知道宇宙大霹靂和我們的銀河系之間有何關聯。還可用它的 「紅眼」(紅外線)看透塵埃雲,目睹正在誕生的恆星和行星,恆星成形的過程,然後,從恆星形成又可以知道,我們太陽系相對於銀河系關連性如何。

任職 L3 Integrated Optical Systems 這家公司,負責韋伯望遠鏡鏡面磨光工作的人員表示,韋伯望遠鏡的鏡面磨光精確度已可達到1百萬分之1英吋。原先,科學家為了測試 JWST 的 18 片主鏡而開發先進的波前偵測技術,結果,已在其他領域造就出新應用。

波前偵測器可在製造光學鏡面時,用來量測鏡面形狀如何,另外,當太空望遠鏡升上太空、進入運轉軌道以後,它同樣也可以用來輔助光學控制。

眼科醫師也經常使用波前技術來測量眼球像差。眼球像差的測量有助於眼睛健康問題的診斷,研究、鑑定和規劃治療。

對即將接受雷射屈光手術的患者,運用這種技術,能提供更精確的眼球測量。根據產業相關人員表示,到目前為止,單在美國,已有1千200萬顆眼球接受過雷射近視手術程序(Lasik Procedure),技術更進步,Lasik的品質也還可以再進一步提升。

「掃描與拼接」本來也是一種為了韋伯望遠鏡而開發的技術,經過它,推動了數項儀器在概念上的創新,讓隱形眼鏡和水晶體量測變得更加精確。此外還有另一項優點,可以把眼球表面當成地形一樣,加以精確測量,想得到嗎?這對眼科的醫療保健很有幫助。

眼睛像地形。想想看要是你的眼睛是和月球表面一樣凹凸不平,而評估配戴隱形眼鏡的時候要是能精確量測到這些凹凸,這對於配出一付專門適合你的眼球的隱形眼鏡當然大有幫助。精進的掃描與拼接技術,幫了眼科醫師一個大忙,因為只要幾秒鐘,他就可以取得和你的眼球相關的各項資訊,譬如眼球形狀和「眼球地形圖」,過去這個工作可得花上幾個小時。自 JWST 計畫衍生而來,已有4項相關專利,這些工具都可用來建造出下一代造福人類眼科的測量設備。

簡而言之,韋伯望遠鏡的影響所及,不止是在幫天文學家找一些像盤古開天一樣老,在宇宙邊上的遙遠星星而已。它對科學技術智庫的建立以及人類視力的提升,同樣具有很大的影響。

透過「Can you See it Now?(現在你看到了嗎?)」這個專案活動, NASA的「創新夥伴關係計劃辦公室」(IPPO)正在將波前偵測和自適應光學技術等程序和實驗室設備開放供民營企業加以利用。這個網址 http://ipp.gsfc.nasa.gov/wavefront 公告了許多可以申請專利的相關技術。

由於財政困難上的考量,美國眾議院撥款委員會商業、司法和科學小組曾在2011年7月的年度預算案中表達,下個年度將完全不撥給韋伯望遠鏡任何經費。(Lauren譯)

PS. 原編者按:由NASA所發布的本篇新聞稿清楚讓我們明白,有時原本為了太空任務而開發的科技,往往在地球上為人類生活帶來實用、有益、甚至出乎意料以外的應用。此僅為其中許多例子之一。

資料來源:轉載自中研院天文網, 2011.08.03, KLC

引用自臺北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

2

12
2

文字

分享

2
12
2
史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二)
EASY天文地科小站_96
・2021/10/07 ・3106字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/陳子翔|師大地球科學系| EASY 天文地科團隊創辦者

作為 NASA 最新一代旗艦級太空望遠鏡,詹姆士.韋伯望遠鏡在性能上當然必須是太空望遠鏡中的佼佼者。然而,工程師與科學家要如何設計韋伯望遠鏡,才能讓它擁有強大的觀測能力呢?這個問題深究起來相當複雜,不過大方向卻出乎意料的簡單,那就是:「越大越好」。

如何衡量望遠鏡的觀測能力

在說明望遠鏡為什麼越大越好前,讓我們先想想,要如何衡量一部望遠鏡的觀測性能好不好呢?一般來說,望遠鏡最重要的兩項性能指標,就是它的「解析力」和「集光力」。

解析力可說就代表望遠鏡的「視力」。解析力越好的望遠鏡,能拍出天體更多的細節,或是說分辨出解析力較差的望遠鏡無法分辨出來,兩顆非常接近的星星。就像是做視力檢查時,當無法看清楚視力檢查表上某一排的「E」到底指向何處時,其實就代表自己眼睛的「極限解析力」已經無法解析出那一排的「E」囉!而天文學家,當然會希望望遠鏡的「視力」超級好呀!

而集光力則可以衡量望遠鏡蒐集星光(來自天體的電磁波)的效率。平時我們用手機拍照時,通常只需要幾百分之一秒的曝光,就能夠拍清楚日常生活周遭的景像。但由於宇宙中的天體往往非常黯淡,要蒐集這些天體的資料,進行學術研究的天文學家對一個目標的曝光時間,經常都是好幾個小時起跳。有時甚至需要超過一星期的曝光時間呢!

可以想像在這樣的情況下,一部望遠鏡的集光效率,是非常重要的一件事。如果你的望遠鏡的集光力是別人的四倍,那別人要花一個月才能拍攝到的目標,你只需要一個禮拜就可以完成。多出來的這些時間,就可以拿去拍攝更多目標,或是對同一個目標拍攝更長的時間,以研究更多黯淡的細節。

Hubble Ultra Deep Field
哈伯極深空,曝光時間大約是11.3天。圖/NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

大口徑,真香!


解析力與集光力是望遠鏡最重要的性能指標,而且它們都與同一個因子息息相關,那就是望遠鏡的「口徑」,即望遠鏡主鏡的直徑大小。

若假設望遠鏡主鏡是完整的圓形,那解析力與口徑是成正比的,而集光力則是與口徑的平方成正比。例如一個口徑兩米的望遠鏡,相比其他條件都相同,但口徑只有一米的望遠鏡,其極限解析力就會高兩倍,集光力則會高四倍。說到這裡相信大家應該就能明白,為什麼天文望遠鏡基本上就是「口徑越大越好」了。

口徑長達 6.5 公尺,這樣塞得進火箭嗎?

既然大口徑這麼棒,那韋伯作為最新的旗艦太空望遠鏡,直上太空望遠鏡史上最大口徑,似乎是再合理不過的事了!

韋伯望遠鏡的口徑是 6.5 公尺,比起前輩哈伯太空望遠鏡的 2.4 公尺大超過 2.5 倍。當初哈伯望遠鏡的鏡片口徑之所以會設計成 2.4 公尺,一大原因是如果口徑再更大,就塞不進太空梭的貨艙了。那麼問題來了,韋伯太空望遠鏡的口徑大小能一次升級那麼多,難道是因為發射韋伯的火箭,比起當時的太空梭還要大很多嗎?

哈伯望遠鏡與韋伯望遠鏡主鏡大小比較。圖/NASA

答案是否定的。事實上,世界上目前沒有任何一款火箭,能夠裝下一面直徑 6.5 公尺的鏡片!而且若是要為了發射韋伯而專門設計一款新火箭,那計畫的預算和進度一定會大大提升和延後,完全得不償失。不過,山不轉路轉,路不轉人轉,也許火箭不可能為了望遠鏡改變,但我們也許可以換個角度想,讓望遠鏡適應火箭呀!

想像一下,如果你有一筆錢,想要買輛腳踏車,讓你未來可以開車帶著腳踏車出遊,卻發現自己車子的後車廂裝不下一般的腳踏車時,你會怎麼辦呢?相信這時後,比起直接購買一台新的大車,選擇折疊式腳踏車會是更合理的選項。而設計 JWST 的工程師們也是採取這樣的策略,將整部韋伯望遠鏡設計成「折疊式」的,從主鏡、次鏡支架到遮陽帆等等機構,都可以收起來降低體積,讓韋伯望遠鏡能夠塞進空間相當有限的火箭整流罩中,並於發射到太空之後,再一步步自動展開成可以運作的狀態。

圖:摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

韋伯望遠鏡的特殊設計

韋伯望遠鏡最明顯的特徵,就是由 18 面六邊形金色鏡片所組合而成,直徑 6.5 公尺的巨大主反射鏡。與哈伯望遠鏡不同的是,它並沒有鏡筒的構造,而是直接將望遠鏡的主鏡與次鏡露在外面,以支架的方式維持結構。而這樣的設計其實在地球上的大型天文台相當常見。

在無塵室中的韋伯望遠鏡主鏡,此時次鏡是摺疊的狀態。圖/NASA

來自宇宙中天體的光線會透過主鏡與次鏡反射,進入主鏡位於中央的黑色錐狀構造。這個構造中設有一些鏡片組,會進一步將光線導至後方的相機和光譜儀。韋伯望遠鏡設有多個不同的相機與光譜儀,並各自有適合的觀測目標,提供各領域的天文學家重要的研究資料。

而巨大的主鏡下方,一層一層的銀色 「帆布」則是韋伯望遠鏡的遮陽帆。它能夠為望遠鏡擋下來自太陽、地球與月球的光線與熱輻射,讓望遠鏡能夠處在既黑暗又低溫的優良觀測環境中。

根據科學家的估算,當韋伯望遠鏡在太空中運作時,它的遮陽帆的面光側溫度可達到約攝氏 110 度,但望遠鏡所處在的背光面,則能維持攝氏零下 210 度左右的低溫。溫度越低,觀測儀器所受到的熱雜訊影響就越少。這樣低溫的環境,對紅外線望遠鏡至關重要。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/ NASA

遮陽帆的背光側提供了望遠鏡與相機所需,黑暗又低溫的運作環境,但並不是所有的設備都需要這樣的條件。比如提供電力的太陽能板,就需要的是充足的陽光才能運作。同時,也有一些設備是本身就會發熱的,例如維持軌道穩定用的小型火箭引擎與燃料,控制望遠鏡指向的反應輪等等。這些設備也都設置於遮陽帆的面光側,如此一來遮陽帆也能順便隔絕這些設備產生的熱,避免干擾望遠鏡的觀測。韋伯望遠鏡上不同設備的配置位置可說各取所需,相當有巧思。

韋伯望遠鏡的面光側,設有太陽能板、通訊天線、火箭引擎等等設備。圖/ NASA

如本系列文章上集:《為何 NASA 不惜大撒幣也要把它送上太空?》所介紹,將紅外線望遠鏡送上太空能帶來許多的好處與研究潛力,然而設計並打造出這樣的科學儀器絕非容易的事。詹姆士.韋伯太空望遠鏡可說就是集結了頂尖科學、工程與技術,以及許多人共同努力的結晶,也期待將來它能帶來豐碩的觀測資料與成果。

延伸閱讀

參考資料

文章難易度
EASY天文地科小站_96
21 篇文章 ・ 766 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
2

文字

分享

0
5
2
用黑白相機拍出色彩繽紛的宇宙
全國大學天文社聯盟
・2022/04/30 ・2550字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/邵思齊,現就讀臺大地質科學系,著迷於大自然的鬼斧神工。

現代的人們生活在充滿明亮人造光源的城鎮中,難以想像純粹的夜空是什麼樣子。對宇宙中天體的印象,多半來自各地天文台與太空望遠鏡所捕捉的絢麗星雲、星團、星系。但這些影像中的顏色是真實的嗎?如果我們能夠用肉眼看到這些天體,它們的顏色真能如影像中如此的五彩繽紛嗎?

色彩的起源:為什麼人眼能看到顏色?

電磁波跨越各種尺度的波段,有波長遠小於 1 奈米的伽瑪射線,也有波長數百公里長的無線電波。但人類眼睛中的的感光細胞僅能感測到波長介於 400-700 奈米之間的電磁波,也就是僅有這段電磁波能夠以紅到紫的色彩出現在人類的視野當中,所以我們對外界的認知就受限於這小一段稱為可見光(Visible Light)的視窗。人之所以能夠辨識不同的顏色,靠的是人眼中的視錐細胞。視錐細胞分成 S、M、L 三種,分別代表 short, medium, long,其感測到的不同波長的光,大致可對應到藍色、綠色、紅色。

S、M、L 三種視錐細胞可以感測不同的顏色,後來的相機設計也以此為基礎。圖/Wikipedia

肉眼可以,那相機呢?

在還沒有電子感光元件的時代,紀錄影像的方法是透過讓底片中的銀離子曝光、沖洗後,變成不透光的金屬銀(負片),但這樣只能呈現出黑白影像。於是,歷經長時間的研究與測試,有著三層感光層的彩色底片誕生了。它的原理是在不同感光層之間加上遮色片,讓三層感光片能夠分別接收到各自顏色的光線。最常使用的遮色片是藍、綠、紅三色。進入數位時代,電子感光元件同樣遇到了只有明暗黑白、無法分辨色彩的問題,但這次,因為感光元件無法透光,不能像底片一樣分層感光,工程師們只好另闢蹊徑。

於是專為相機感光元件量身打造的拜爾濾色鏡(Bayer Filter)誕生了,也就是由紅色、綠色、藍色三種方形濾光片相間排列成的馬賽克狀濾鏡,每一格只會讓一種顏色通過,如此一來,底下的感光元件就只會接收到一種顏色的光。接著,再把相鄰的像素數值相互內插計算,就可以得到一張彩色影像。由於人的視錐細胞對綠色特別敏感,因此拜爾濾色鏡的設計中,綠色濾光片的數量是其他顏色的兩倍。

這種讓各個像素接收不同顏色資訊的做法,雖然方便快速,卻需要好幾個像素才能還原一個區塊的顏色,因此會大幅降低影像解析度。這對寸解析度寸金的天文研究來說,非常划不來,畢竟我們既想得知每個像素接收到的原始顏色,又想獲得以像素為解析單位的最佳畫質,盡可能不要損失任何資訊。

藍綠紅相間的拜爾綠色鏡,廣泛用於日常使用的彩色感光元件,例如手機鏡頭、單眼相機等裝置。圖/Wikipedia

要怎麼讓每個像素都能獨立呈現接收到的光子,而且還能夠完整得到顏色的資訊呢?最好的方法就是在整塊感光元件前加上一塊單色的濾色鏡,然後輪流更換不同的濾色鏡,一次只記錄一種顏色的強度。然後,依照濾鏡的波段賦予影像顏色,進行疊合,得到一張還原真實顏色的照片。如此一來,我們就能用較長的拍攝時間,來換取最完整的資訊量。以天文研究來說,這種做法更加划算。

另外,由於視錐細胞並不是只對單一波長的光敏感,而是能夠接收波長範圍大約數百奈米寬的光,因此若是要還原真實顏色的影像,人們通常會使用寬頻濾鏡(Broadband filter),也就是波段跨足數百奈米的濾鏡進行拍攝。

美麗之外?濾鏡的科學妙用

雖然還原天體的真實顏色是個相當直覺的作法,但既然我們有能力分開不同的顏色,當然就有各式各樣的應用方法。當電子從高能階躍遷回到低能階,就會釋放能量,也就是放出固定波長的電磁波。若是受到激發的元素不同,電子躍遷時放出的電磁波波長也會隨之改變,呈現出不同顏色的光。

如果我們在拍攝時,可以只捕捉這些特定波長的光,那我們拍出的照片,就代表著該元素在宇宙中的分佈位置。對天文學家來說,這是相當重要的資訊。因此,我們也常使用所謂的窄頻濾鏡(Narrowband filter),只接收目標波段周圍數十甚至數個奈米寬的波長範圍。常見的窄頻濾鏡有氫(H)、氦(He)、氮(N)、氧(O)、硫(S)等等。

有時候,按照原本的顏色疊合一組元素影像並不是那麼妥當,例如 H-alpha(氫原子)和 N II(氮離子)這兩條譜線,同樣都是波長 600 多奈米的紅色光,但如果按照它們原本的波長,在合成影像時都用紅色表示,就很難分辨氫和氮的分布狀態。這時候,天文學家們會按照各個元素之間的相對波長來配製顏色。

以底下的氣泡星雲(Bubble Nebula, NGC7635)為例,波長比較長的 N II 會被調成紅色,相對短一點的 H-alpha 就會調成綠色,而原本是綠色的 O III 氧離子則會被調成藍色。如此一來,我們就可以相對輕鬆地在畫面中分辨各個元素出現的位置。缺點是,如果我們真的用肉眼觀測這些天體,看到的顏色就會跟圖中大不相同。

由哈伯太空望遠鏡拍攝的氣泡星雲,使用了三種波段的窄頻濾鏡。圖/NASA

當然,這種人工配製顏色的方法也可以用來呈現可見光以外的電磁波,例如紅外線、紫外線等。舉哈伯太空望遠鏡的代表作「創生之柱」為例,他們使用了兩個近紅外線波段,比較長波的 F160W 在 1400~1700nm,比較短的 F110W在900~1400nm,分別就被調成了黃色和藍色。星點發出的紅外光穿越了創生之柱的塵埃,與可見光疊合的影像比較,各有各的獨特之處。

三窄頻濾鏡疊合的可見光影像與兩近紅外線波段疊合的影像對比。圖/NASA

望遠鏡接收來自千萬光年外的天體光線,一顆一顆的光子累積成影像上的點點像素,經過科學家們的巧手,成為烙印在人們記憶中的壯麗影像。有些天體按照他們原始的顏色重組,讓我們有如身歷其境,親眼見證它們的存在;有些影像雖然經過調製,並非原汁原味,卻調和了肉眼所不能見的波段,讓我們得以一窺它們背後的故事。

全國大學天文社聯盟
7 篇文章 ・ 13 位粉絲