0

0
0

文字

分享

0
0
0

韋伯太空望遠鏡對人眼健康有益

臺北天文館_96
・2011/08/09 ・1648字 ・閱讀時間約 3 分鐘 ・SR值 469 ・五年級

一套Scanning Shack Hartmann System掃描系統,簡稱”SSHS”,為兩組成對的一個大型鏡面測試機臺,用來量測詹姆斯韋伯太空紅外望遠鏡(簡稱: JWST)的鏡面平整度。在執行SSHS計畫專案過程中,波前偵測的技術重大突破,也大幅提升眼科儀器雷射光束的對齊精確度。圖片來源:雅培醫療光學公司

最先進的詹姆斯韋伯紅外太空望遠鏡(以下簡稱JWST或「韋伯望遠鏡」)雖然是為了天文研究用途所打造,不過,相關的技術成果已證明對人體眼睛健康有益,施工建造仍在進行,最先享受到這項尖端科技的領域卻是:眼科。

據雅培醫療光學公司研究人員表示,韋伯望遠鏡不僅在天文學、鏡面加工等領域開發出最新科技,還對於人體眼球測量、眼部疾病診斷,也帶來許多改良,未來還有機會使眼科手術精確度大增。

韋伯望遠鏡是美國 NASA 所建造的有史以來科學貢獻力道最強大的望遠鏡 – 性能比哈柏太空望遠鏡更強大 100 倍。我們將用它來發現:宇宙早期,第一個星系如何形成?然後便能知道宇宙大霹靂和我們的銀河系之間有何關聯。還可用它的 「紅眼」(紅外線)看透塵埃雲,目睹正在誕生的恆星和行星,恆星成形的過程,然後,從恆星形成又可以知道,我們太陽系相對於銀河系關連性如何。

任職 L3 Integrated Optical Systems 這家公司,負責韋伯望遠鏡鏡面磨光工作的人員表示,韋伯望遠鏡的鏡面磨光精確度已可達到1百萬分之1英吋。原先,科學家為了測試 JWST 的 18 片主鏡而開發先進的波前偵測技術,結果,已在其他領域造就出新應用。

-----廣告,請繼續往下閱讀-----

波前偵測器可在製造光學鏡面時,用來量測鏡面形狀如何,另外,當太空望遠鏡升上太空、進入運轉軌道以後,它同樣也可以用來輔助光學控制。

眼科醫師也經常使用波前技術來測量眼球像差。眼球像差的測量有助於眼睛健康問題的診斷,研究、鑑定和規劃治療。

對即將接受雷射屈光手術的患者,運用這種技術,能提供更精確的眼球測量。根據產業相關人員表示,到目前為止,單在美國,已有1千200萬顆眼球接受過雷射近視手術程序(Lasik Procedure),技術更進步,Lasik的品質也還可以再進一步提升。

「掃描與拼接」本來也是一種為了韋伯望遠鏡而開發的技術,經過它,推動了數項儀器在概念上的創新,讓隱形眼鏡和水晶體量測變得更加精確。此外還有另一項優點,可以把眼球表面當成地形一樣,加以精確測量,想得到嗎?這對眼科的醫療保健很有幫助。

-----廣告,請繼續往下閱讀-----

眼睛像地形。想想看要是你的眼睛是和月球表面一樣凹凸不平,而評估配戴隱形眼鏡的時候要是能精確量測到這些凹凸,這對於配出一付專門適合你的眼球的隱形眼鏡當然大有幫助。精進的掃描與拼接技術,幫了眼科醫師一個大忙,因為只要幾秒鐘,他就可以取得和你的眼球相關的各項資訊,譬如眼球形狀和「眼球地形圖」,過去這個工作可得花上幾個小時。自 JWST 計畫衍生而來,已有4項相關專利,這些工具都可用來建造出下一代造福人類眼科的測量設備。

簡而言之,韋伯望遠鏡的影響所及,不止是在幫天文學家找一些像盤古開天一樣老,在宇宙邊上的遙遠星星而已。它對科學技術智庫的建立以及人類視力的提升,同樣具有很大的影響。

透過「Can you See it Now?(現在你看到了嗎?)」這個專案活動, NASA的「創新夥伴關係計劃辦公室」(IPPO)正在將波前偵測和自適應光學技術等程序和實驗室設備開放供民營企業加以利用。這個網址 http://ipp.gsfc.nasa.gov/wavefront 公告了許多可以申請專利的相關技術。

由於財政困難上的考量,美國眾議院撥款委員會商業、司法和科學小組曾在2011年7月的年度預算案中表達,下個年度將完全不撥給韋伯望遠鏡任何經費。(Lauren譯)

-----廣告,請繼續往下閱讀-----

PS. 原編者按:由NASA所發布的本篇新聞稿清楚讓我們明白,有時原本為了太空任務而開發的科技,往往在地球上為人類生活帶來實用、有益、甚至出乎意料以外的應用。此僅為其中許多例子之一。

資料來源:轉載自中研院天文網, 2011.08.03, KLC

引用自臺北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

2

12
2

文字

分享

2
12
2
史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二)
EASY天文地科小站_96
・2021/10/07 ・3106字 ・閱讀時間約 6 分鐘

  • 作者/陳子翔|師大地球科學系| EASY 天文地科團隊創辦者

作為 NASA 最新一代旗艦級太空望遠鏡,詹姆士.韋伯望遠鏡在性能上當然必須是太空望遠鏡中的佼佼者。然而,工程師與科學家要如何設計韋伯望遠鏡,才能讓它擁有強大的觀測能力呢?這個問題深究起來相當複雜,不過大方向卻出乎意料的簡單,那就是:「越大越好」。

如何衡量望遠鏡的觀測能力

在說明望遠鏡為什麼越大越好前,讓我們先想想,要如何衡量一部望遠鏡的觀測性能好不好呢?一般來說,望遠鏡最重要的兩項性能指標,就是它的「解析力」和「集光力」。

解析力可說就代表望遠鏡的「視力」。解析力越好的望遠鏡,能拍出天體更多的細節,或是說分辨出解析力較差的望遠鏡無法分辨出來,兩顆非常接近的星星。就像是做視力檢查時,當無法看清楚視力檢查表上某一排的「E」到底指向何處時,其實就代表自己眼睛的「極限解析力」已經無法解析出那一排的「E」囉!而天文學家,當然會希望望遠鏡的「視力」超級好呀!

而集光力則可以衡量望遠鏡蒐集星光(來自天體的電磁波)的效率。平時我們用手機拍照時,通常只需要幾百分之一秒的曝光,就能夠拍清楚日常生活周遭的景像。但由於宇宙中的天體往往非常黯淡,要蒐集這些天體的資料,進行學術研究的天文學家對一個目標的曝光時間,經常都是好幾個小時起跳。有時甚至需要超過一星期的曝光時間呢!

-----廣告,請繼續往下閱讀-----

可以想像在這樣的情況下,一部望遠鏡的集光效率,是非常重要的一件事。如果你的望遠鏡的集光力是別人的四倍,那別人要花一個月才能拍攝到的目標,你只需要一個禮拜就可以完成。多出來的這些時間,就可以拿去拍攝更多目標,或是對同一個目標拍攝更長的時間,以研究更多黯淡的細節。

Hubble Ultra Deep Field
哈伯極深空,曝光時間大約是11.3天。圖/NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

大口徑,真香!


解析力與集光力是望遠鏡最重要的性能指標,而且它們都與同一個因子息息相關,那就是望遠鏡的「口徑」,即望遠鏡主鏡的直徑大小。

若假設望遠鏡主鏡是完整的圓形,那解析力與口徑是成正比的,而集光力則是與口徑的平方成正比。例如一個口徑兩米的望遠鏡,相比其他條件都相同,但口徑只有一米的望遠鏡,其極限解析力就會高兩倍,集光力則會高四倍。說到這裡相信大家應該就能明白,為什麼天文望遠鏡基本上就是「口徑越大越好」了。

口徑長達 6.5 公尺,這樣塞得進火箭嗎?

既然大口徑這麼棒,那韋伯作為最新的旗艦太空望遠鏡,直上太空望遠鏡史上最大口徑,似乎是再合理不過的事了!

-----廣告,請繼續往下閱讀-----

韋伯望遠鏡的口徑是 6.5 公尺,比起前輩哈伯太空望遠鏡的 2.4 公尺大超過 2.5 倍。當初哈伯望遠鏡的鏡片口徑之所以會設計成 2.4 公尺,一大原因是如果口徑再更大,就塞不進太空梭的貨艙了。那麼問題來了,韋伯太空望遠鏡的口徑大小能一次升級那麼多,難道是因為發射韋伯的火箭,比起當時的太空梭還要大很多嗎?

哈伯望遠鏡與韋伯望遠鏡主鏡大小比較。圖/NASA

答案是否定的。事實上,世界上目前沒有任何一款火箭,能夠裝下一面直徑 6.5 公尺的鏡片!而且若是要為了發射韋伯而專門設計一款新火箭,那計畫的預算和進度一定會大大提升和延後,完全得不償失。不過,山不轉路轉,路不轉人轉,也許火箭不可能為了望遠鏡改變,但我們也許可以換個角度想,讓望遠鏡適應火箭呀!

想像一下,如果你有一筆錢,想要買輛腳踏車,讓你未來可以開車帶著腳踏車出遊,卻發現自己車子的後車廂裝不下一般的腳踏車時,你會怎麼辦呢?相信這時後,比起直接購買一台新的大車,選擇折疊式腳踏車會是更合理的選項。而設計 JWST 的工程師們也是採取這樣的策略,將整部韋伯望遠鏡設計成「折疊式」的,從主鏡、次鏡支架到遮陽帆等等機構,都可以收起來降低體積,讓韋伯望遠鏡能夠塞進空間相當有限的火箭整流罩中,並於發射到太空之後,再一步步自動展開成可以運作的狀態。

圖:摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

韋伯望遠鏡的特殊設計

韋伯望遠鏡最明顯的特徵,就是由 18 面六邊形金色鏡片所組合而成,直徑 6.5 公尺的巨大主反射鏡。與哈伯望遠鏡不同的是,它並沒有鏡筒的構造,而是直接將望遠鏡的主鏡與次鏡露在外面,以支架的方式維持結構。而這樣的設計其實在地球上的大型天文台相當常見。

-----廣告,請繼續往下閱讀-----
在無塵室中的韋伯望遠鏡主鏡,此時次鏡是摺疊的狀態。圖/NASA

來自宇宙中天體的光線會透過主鏡與次鏡反射,進入主鏡位於中央的黑色錐狀構造。這個構造中設有一些鏡片組,會進一步將光線導至後方的相機和光譜儀。韋伯望遠鏡設有多個不同的相機與光譜儀,並各自有適合的觀測目標,提供各領域的天文學家重要的研究資料。

而巨大的主鏡下方,一層一層的銀色 「帆布」則是韋伯望遠鏡的遮陽帆。它能夠為望遠鏡擋下來自太陽、地球與月球的光線與熱輻射,讓望遠鏡能夠處在既黑暗又低溫的優良觀測環境中。

根據科學家的估算,當韋伯望遠鏡在太空中運作時,它的遮陽帆的面光側溫度可達到約攝氏 110 度,但望遠鏡所處在的背光面,則能維持攝氏零下 210 度左右的低溫。溫度越低,觀測儀器所受到的熱雜訊影響就越少。這樣低溫的環境,對紅外線望遠鏡至關重要。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/ NASA

遮陽帆的背光側提供了望遠鏡與相機所需,黑暗又低溫的運作環境,但並不是所有的設備都需要這樣的條件。比如提供電力的太陽能板,就需要的是充足的陽光才能運作。同時,也有一些設備是本身就會發熱的,例如維持軌道穩定用的小型火箭引擎與燃料,控制望遠鏡指向的反應輪等等。這些設備也都設置於遮陽帆的面光側,如此一來遮陽帆也能順便隔絕這些設備產生的熱,避免干擾望遠鏡的觀測。韋伯望遠鏡上不同設備的配置位置可說各取所需,相當有巧思。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的面光側,設有太陽能板、通訊天線、火箭引擎等等設備。圖/ NASA

如本系列文章上集:《為何 NASA 不惜大撒幣也要把它送上太空?》所介紹,將紅外線望遠鏡送上太空能帶來許多的好處與研究潛力,然而設計並打造出這樣的科學儀器絕非容易的事。詹姆士.韋伯太空望遠鏡可說就是集結了頂尖科學、工程與技術,以及許多人共同努力的結晶,也期待將來它能帶來豐碩的觀測資料與成果。

延伸閱讀

參考資料

文章難易度
EASY天文地科小站_96
23 篇文章 ・ 1529 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
2

文字

分享

0
5
2
用黑白相機拍出色彩繽紛的宇宙
全國大學天文社聯盟
・2022/04/30 ・2550字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/邵思齊,現就讀臺大地質科學系,著迷於大自然的鬼斧神工。

現代的人們生活在充滿明亮人造光源的城鎮中,難以想像純粹的夜空是什麼樣子。對宇宙中天體的印象,多半來自各地天文台與太空望遠鏡所捕捉的絢麗星雲、星團、星系。但這些影像中的顏色是真實的嗎?如果我們能夠用肉眼看到這些天體,它們的顏色真能如影像中如此的五彩繽紛嗎?

色彩的起源:為什麼人眼能看到顏色?

電磁波跨越各種尺度的波段,有波長遠小於 1 奈米的伽瑪射線,也有波長數百公里長的無線電波。但人類眼睛中的的感光細胞僅能感測到波長介於 400-700 奈米之間的電磁波,也就是僅有這段電磁波能夠以紅到紫的色彩出現在人類的視野當中,所以我們對外界的認知就受限於這小一段稱為可見光(Visible Light)的視窗。人之所以能夠辨識不同的顏色,靠的是人眼中的視錐細胞。視錐細胞分成 S、M、L 三種,分別代表 short, medium, long,其感測到的不同波長的光,大致可對應到藍色、綠色、紅色。

S、M、L 三種視錐細胞可以感測不同的顏色,後來的相機設計也以此為基礎。圖/Wikipedia

肉眼可以,那相機呢?

在還沒有電子感光元件的時代,紀錄影像的方法是透過讓底片中的銀離子曝光、沖洗後,變成不透光的金屬銀(負片),但這樣只能呈現出黑白影像。於是,歷經長時間的研究與測試,有著三層感光層的彩色底片誕生了。它的原理是在不同感光層之間加上遮色片,讓三層感光片能夠分別接收到各自顏色的光線。最常使用的遮色片是藍、綠、紅三色。進入數位時代,電子感光元件同樣遇到了只有明暗黑白、無法分辨色彩的問題,但這次,因為感光元件無法透光,不能像底片一樣分層感光,工程師們只好另闢蹊徑。

於是專為相機感光元件量身打造的拜爾濾色鏡(Bayer Filter)誕生了,也就是由紅色、綠色、藍色三種方形濾光片相間排列成的馬賽克狀濾鏡,每一格只會讓一種顏色通過,如此一來,底下的感光元件就只會接收到一種顏色的光。接著,再把相鄰的像素數值相互內插計算,就可以得到一張彩色影像。由於人的視錐細胞對綠色特別敏感,因此拜爾濾色鏡的設計中,綠色濾光片的數量是其他顏色的兩倍。

-----廣告,請繼續往下閱讀-----

這種讓各個像素接收不同顏色資訊的做法,雖然方便快速,卻需要好幾個像素才能還原一個區塊的顏色,因此會大幅降低影像解析度。這對寸解析度寸金的天文研究來說,非常划不來,畢竟我們既想得知每個像素接收到的原始顏色,又想獲得以像素為解析單位的最佳畫質,盡可能不要損失任何資訊。

藍綠紅相間的拜爾綠色鏡,廣泛用於日常使用的彩色感光元件,例如手機鏡頭、單眼相機等裝置。圖/Wikipedia

要怎麼讓每個像素都能獨立呈現接收到的光子,而且還能夠完整得到顏色的資訊呢?最好的方法就是在整塊感光元件前加上一塊單色的濾色鏡,然後輪流更換不同的濾色鏡,一次只記錄一種顏色的強度。然後,依照濾鏡的波段賦予影像顏色,進行疊合,得到一張還原真實顏色的照片。如此一來,我們就能用較長的拍攝時間,來換取最完整的資訊量。以天文研究來說,這種做法更加划算。

另外,由於視錐細胞並不是只對單一波長的光敏感,而是能夠接收波長範圍大約數百奈米寬的光,因此若是要還原真實顏色的影像,人們通常會使用寬頻濾鏡(Broadband filter),也就是波段跨足數百奈米的濾鏡進行拍攝。

美麗之外?濾鏡的科學妙用

雖然還原天體的真實顏色是個相當直覺的作法,但既然我們有能力分開不同的顏色,當然就有各式各樣的應用方法。當電子從高能階躍遷回到低能階,就會釋放能量,也就是放出固定波長的電磁波。若是受到激發的元素不同,電子躍遷時放出的電磁波波長也會隨之改變,呈現出不同顏色的光。

-----廣告,請繼續往下閱讀-----

如果我們在拍攝時,可以只捕捉這些特定波長的光,那我們拍出的照片,就代表著該元素在宇宙中的分佈位置。對天文學家來說,這是相當重要的資訊。因此,我們也常使用所謂的窄頻濾鏡(Narrowband filter),只接收目標波段周圍數十甚至數個奈米寬的波長範圍。常見的窄頻濾鏡有氫(H)、氦(He)、氮(N)、氧(O)、硫(S)等等。

有時候,按照原本的顏色疊合一組元素影像並不是那麼妥當,例如 H-alpha(氫原子)和 N II(氮離子)這兩條譜線,同樣都是波長 600 多奈米的紅色光,但如果按照它們原本的波長,在合成影像時都用紅色表示,就很難分辨氫和氮的分布狀態。這時候,天文學家們會按照各個元素之間的相對波長來配製顏色。

以底下的氣泡星雲(Bubble Nebula, NGC7635)為例,波長比較長的 N II 會被調成紅色,相對短一點的 H-alpha 就會調成綠色,而原本是綠色的 O III 氧離子則會被調成藍色。如此一來,我們就可以相對輕鬆地在畫面中分辨各個元素出現的位置。缺點是,如果我們真的用肉眼觀測這些天體,看到的顏色就會跟圖中大不相同。

由哈伯太空望遠鏡拍攝的氣泡星雲,使用了三種波段的窄頻濾鏡。圖/NASA

當然,這種人工配製顏色的方法也可以用來呈現可見光以外的電磁波,例如紅外線、紫外線等。舉哈伯太空望遠鏡的代表作「創生之柱」為例,他們使用了兩個近紅外線波段,比較長波的 F160W 在 1400~1700nm,比較短的 F110W在900~1400nm,分別就被調成了黃色和藍色。星點發出的紅外光穿越了創生之柱的塵埃,與可見光疊合的影像比較,各有各的獨特之處。

三窄頻濾鏡疊合的可見光影像與兩近紅外線波段疊合的影像對比。圖/NASA

望遠鏡接收來自千萬光年外的天體光線,一顆一顆的光子累積成影像上的點點像素,經過科學家們的巧手,成為烙印在人們記憶中的壯麗影像。有些天體按照他們原始的顏色重組,讓我們有如身歷其境,親眼見證它們的存在;有些影像雖然經過調製,並非原汁原味,卻調和了肉眼所不能見的波段,讓我們得以一窺它們背後的故事。