Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

滅火新趨勢:資料探勘直搗黃龍

李柏昱
・2014/04/21 ・1573字 ・閱讀時間約 3 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

 

荷蘭阿姆斯特丹的災害風險地圖。(資料來源:Qliktech)
荷蘭阿姆斯特丹的災害風險地圖。(資料來源:Qliktech)

在紐約、倫敦、阿姆斯特丹或是其他任何一座現代大型城市中,數百萬棟建築聚在一塊兒,而每年總有幾千棟會被大火吞噬。消防隊有沒有可能事先預知哪一棟建築將竄出火花?有關部門又該如何決定資源的配置以因應潛在的嚴重意外?
 
過去看似無解的難題,巨量資料時代的來臨與資料探勘(data mining)技術的發展,或許帶來解決問題的一道曙光。
 
巨量資料時代
 
巨量資料在當今諸多領域都是熱門話題。用最簡單的話講,巨量資料就是數據資料的資料量大到難以進行分析、搜尋或是處理。目前我們的社會正以爆炸性的速度產生各種資料。根據IBM的報告,自人類有歷史以來,有90%的資料是在過去的兩年中被創造出來。
 
巨量資料主要來自電腦、智慧型手機、社群網站、各種錄影設備以及網路。不過隨著電腦運算能力與時俱進、軟體逐漸高度專業化,我們開始有能力處理並使用這些大海般的資料數據,也就是能開始進行資料探勘的工作。
 
資料探勘
 
回到火災的話題上,利用新科技與新軟體,各地消防部門的風險管理員得以分析一拖拉庫的資料數據。透過整合建築物、街道、水路、運輸管線、貧窮、屋齡、空屋、有無電氣問題、灑水器數量與位置、有無電梯等等與火災相關的資訊,與消防意外事件數、火災傷亡人數疊合,便能製作出一份「災害風險地圖」。
 
這張地圖對於消防部門助益極大。首先,消防部門能有效部屬應對不同事故所需的資源,例如化學火災或車禍,在災害發生第一時間就擁有正確的救難設備與資源。
 
其次,各地區消防員的訓練能依照各地災害風險的不同量身打造;進行例行性的消防檢查時,消防員也能從中得知哪些是風險最高的建築物,需要優先拜訪。而在此之前,消防員的例行檢查都是隨機進行的。
 
第三,對於那些住在災害風險高的建築物的居民,消防部門也能提供他們如何提升安全指數的改善建議。
 
最後,這套系統能作為消防部門決策的依據,根據風險高低制定救災優先順序。風險最高的地區需要最短的救災反應時間。同時,災害風險地圖也能協助指揮救災資源的配置。
 
不過,一切才剛開始,防災地圖未來有十足的發展可能性。比如說,未來消防車上將配置能顯示技術資訊與風險資料的螢幕,從社群媒體上取得資料也是考慮中的方案。
 
目前消防部門碰上所有推動防災工作的人都會遭遇的問題:他們無法證明火災發生次數的下降是否為災害風險地圖的功勞,某些「原本」應該付之一炬的建築,是否因為這份地圖而被拯救。或許只有透過長期的追蹤,這份火災的風險地圖才能在持續下降的數據當中,展現它的價值。

(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿/2014年/3月)
 
責任編輯:鄭國威│元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習:
-----廣告,請繼續往下閱讀-----
文章難易度
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【Gene思書齋】跟著大數據學習教育
Gene Ng_96
・2015/02/03 ・2892字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

A1500526Big_Data_cover-230x346

在這裡介紹過了牛津大學網路研究所教授麥爾荀伯格(Viktor Mayer-Schonberger)和《經濟學人》(The Economist)雜誌資料編輯庫基耶(Kenneth Cukier)的《大數據》Big Data: A Revolution That Will Transform How We Live, Work, and Think)這本好書,他們探討大數據(巨量資料)是什麼碗糕,大數據有什麼意義,還有大數據將如何改變我們的生活,對經濟、社會和科學會帶來什麼影響,我們又能如何趕搭上這波新潮流,如何懂得保護自己,避免個人資料和隱私受到侵害等等(請參見〈快準狠的大數據〉)。

這次他們把魔爪…哦不…觸手伸到了「教育」,寫了這本《大數據:教育篇:教學與學習的未來趨勢》Learning with Big Data: The Future of Education),因為跟據他們的觀察,大數據正在跨入教育體系,對於全世界的教學與學習活動,勢必將產生極為深遠的影響,因此在這本書就是要談談大數據將如何改變教育。

他們舉出「大規模開放式線上課程」(MOOC)、可汗學院(Khan Academy)、Duolingo語文學習網站等案例。雖然這些線上課程早已不是新聞了,可是他們要再進一步告訴我們,當大數據的時代來臨,教育就不只 是上課聽講、讀書考試打成績、或是輕易選修更多科目而已。透過大數據,我們可以擁有史上最強大、具實證效果的工具,能夠瞭解「誰在學習」、「怎樣教學」與 「如何學習」這些重要的課題。

大數據讓我們前所未有的方式和觀點,看到究竟什麼有用、什麼沒用,以前不可能觀察到的種種學習阻礙,現在有辦法一一化解,大幅改善學生的學習成效,顛覆傳 統教學模式,造福更多學子。課程可以依據學生個人的需求做調整,真正做到因材施教,因為教師可以透過學生在線上學習時不經意的行為來判斷成效、調整教學內 容和順序,以及多次複習會造成學習瓶頸的困難觀念,甚至即時因應學生的反應而出招等等。教師的工作不會被教學網路和影片取代,而會變得更有效益、也更有 趣,因為能夠更專注針對學生作個人化的指導。

-----廣告,請繼續往下閱讀-----

他們也認利用大數據分析,學校領導者和政府決策官員,也能用更低的成本提供更多教育機會,這些正是減少社會貧富差距、讓社經階層流動的重要因素;社會大眾 也能夠知道「學習」應當是怎麼一回事,打破教育主管機關和學校的壟斷地位,從而讓教育的本質和體制徹底翻轉。他們主張,大數據時代正是不斷學習的時代、翻 轉教育的時代!

不過大數據的應用是雙面刃,我們可能會把相關性誤判為因果,而且如果學生的個資無法被保護,其舊學習歷程被曝光,可是會影響日後的升學與就業。關於這方 面,《大數據:教育篇》引用了《大數據》的許多觀念和案例,例如誤將相關性當因果以及個資保護等等,所以建議也要去讀《大數據》這本書。

不過,盡信書不如無書,作者在西方遇到的問題,和我們在東亞遇到的,有很大的差異。最大的差異有兩點。

一個大差異,在一張很多網友在臉書分享的圖表清楚表達出來:圖裡有兩條軸線,第一條軸線為「歐美人才養成」,而第二條則是「台灣人才養成」,軸線將學習生 涯分成「學前」、「小學」、「國中」、「高中」以及「大學」等五個階段。「歐美人才養成」各階段的學習目標相當明確並且不同,學前做好生活管理、小學探索 環境、國中要開始找尋自己的夢想、高中則要面對生涯抉擇,而到了大學就要開始培養實務能力。

-----廣告,請繼續往下閱讀-----

台灣人才培養的軸線,從「學前」一直到「高中」生涯,全是「讀書考試」,一直到「大學」時期,才要將「生活管理」、「探索環境」、「找尋夢想」、「生涯抉擇」以及「培養實務能力」一次統統完成,其中當然還少不了「讀書考試」。

歐美的教育偏向素質教育,相對於偏重考試的應試教育而言,較為注重體育、藝術能力和多元智能的培養,而真正的素質教育,目的在於讓學生能發揮個人潛能,各 展所長,並培養良好的品格,並不局限於學術上的才能。台灣的教育能夠篩選出很會考試(甚至還不見得會「讀書」哦)的學生,連公務系統都極度依賴考試,雖然 有好些公家工作幾乎不需要考試的技能。可是因為考試實在太浮濫,使得疲於奔命的教師能好好用心出題的時間都被嚴重壓縮,連有沒有認認真真地好好考考學生各 方面的學術能力都成問題,更甭提學術能力也非社會所需的全部。

另外一個差異是,台灣的教育太過注重標準答案,可是嚴重扼殺學生的創意。但是歐美的教育很注重個人的啟發,所以頂尖的人才在歐美的教育環境,往往可以更容 易發揮出他們的潛力,表現出他們充沛的創造力。可是他們的對素質一般的學生,反正做得不見得比台灣好。台灣的教育環境,讓學生拚命練習考試、練習考試再練 習考試,讓學生的程度比起歐美整齊的多。以我和朋友們在美國唸博班當助教的經驗來看,台灣學生的程度差異在一個班中,算是比較整齊的,成績優劣幾乎憑個人 努力付出多寡。可是在美國大學,尤其是公立學校,大部分的學生,在數理方面真的很不行!

舉個例子來說,我們常常看到學生在實驗數據中,他們嘗試要把上噸的鹽溶在小燒杯裡,或者把實驗桌上的小鉛球射上火星,因為連單位都搞錯了Orz 有位老師在普通生物學考題上問學生什麼是pH值,居然有四分之一的學生選擇「它不存在」;還有老師指出,大四的學生,居然有兩成回答果蠅的基因數量是小於 一,另外兩成寫無窮大(正確數目大約是一萬多),他說那四成學生基本上是「完全的廢物」;還有很多搞笑的事,真是罄竹難書。面對這些學生,教授們的態度往 往是「放棄」,可是大數據或許能讓這情勢反轉。

-----廣告,請繼續往下閱讀-----

台灣的教育環境,往往比歐美更善待中上程度的學生,用嚴酷的練習考試來磨練他們的能力,可是卻嚴重地忽略了頂尖人材的教育,而且也幾乎完全沒有為培養社會 各界的領袖所準備。台灣的大學,就算連頂尖的台大和清大,大致上都還是停留在訓練優異的幹部為主,教授的教學方式和內容,和其他大部分的大學幾乎沒差太 多,頂多深度有一些差異而已。可是,就拿美國來說,頂尖大學的目標是在培養頂尖的領袖!一流大學的目標是在培養社會各界菁英、二流大學的是在培養優異的幹 部、三流大學的是在培養良好的基層員工等等。所以,很不幸的,台灣的大學可能在培養優異的幹部上很稱職,可是要成為社會各界菁英,就只能靠學生自己的努力 和見識,領袖的話就算了。

要培養出優異的幹部,大數據的應用應該有其優勢,可是社會菁英和領袖的培養,大數據或許無用武之地,因為大據數無法告訴你過去未曾發生的事情,也無法預測 和產生出創新,因此對於台灣的教育,大數據可以提高學生的學業,可是五育的訓練,以及領袖和社會菁英的培養,我們可能先不要去思考什麼大數據之類的,先從 整體教育環境下手才比較實際。

關於教育,這裡只能點出冰山一角,我也沒有標準答案,但請容我在此私心介紹一位好友謝宇程在商周的高人氣專欄「學與業壯遊」,裡頭有很多很多問題,我們必須繼續思索。

台灣教育問題多如牛毛,不過我們不必對台灣教育灰心,看了以下影片,你應該會很感動,希望還是在的:

-----廣告,請繼續往下閱讀-----

本文原刊登於【GENE思書軒】,並同步刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
0

文字

分享

0
0
0
【Gene思書齋】精準預測的訊號與雜訊
Gene Ng_96
・2013/12/09 ・978字 ・閱讀時間約 2 分鐘 ・SR值 494 ・六年級

精準預測:如何從巨量雜訊中,看出重要的訊息?The Signal and the Noise: Why So Many Predictions Fail—but Some Don’t

 

《精準預測:如何從巨量雜訊中,看出重要的訊息?》The Signal and the Noise: Why So Many Predictions Fail—but Some Don’t)是一本非常值得期待的好書,Amazon.com就把《精準預測》評選為2012年最佳非文字書籍第一名!這不意外,因為Amazon.com就是精準預測顧客品味而稱霸零售業的XD 《精準預測》長居《紐約時報》(The New York Times)和Amazon.com的暢銷排行榜。

以一本談統計和預測的書而言,《精準預測》暢銷得異常。可是讀了《精準預測》之 後,就完全不意外了,因為《精準預測》真的是本很好看的書!雖然是處女作,不過席佛卻能把統計預測這看似乏味的事,解說成是世界上最有趣的玩意兒之一!他 對統計預測在經濟學、政治學、氣候學、地震學、流行病學、電腦科技、棒球、德州撲克、體育賭博等等領域,都有獨到和精闢的見解,讀這本《精準預測》是一趟樂趣無窮的知性之旅!

討論大數據的書開始變多,所以有了大數據,我們對這個世界的各方面,就能做出更好的預測嗎?各行各業和各學門,是否都要擁抱大數據呢?《大數據》(Big Data: A Revolution That Will Transform How We Live, Work, and Think)告訴我們,在大數據時代,可以不必在乎因果的問題,還有不擔心雜訊(請參見〈快準狠的大數據(Big Data)〉)。

可是預測天才奈特.席佛(Nate Silver)卻在《精準預測》指 出,其實關鍵還是人的解讀,不是純粹的數字而已。而最難預測之處在於,我們要懂得分辨出哪些是無意義的雜訊,哪些才是關鍵的訊號。如果誤把雜訊當訊號,做 出來的預測,不管用的數據有多龐大,都不會準確,而且嚴重的謬誤與損失還會迎面而來!數據導向的預測會成功也會失誤,數據並非多就是美,要求更多數據之 際,人更應該自我要求模型的正確。

-----廣告,請繼續往下閱讀-----

席佛是美國當代知名的統計與預測鬼才。據說他從小就對數字與思考展現興趣與天分,六歲便開始預測棒球賽事。他進入芝加哥大學主修經濟學,並在大三前往倫敦 政經學院研修一年。大學畢業後,進入安侯建業事務所(KPMG)擔任顧問。在安侯建業雖然他有一份穩定高薪的工作,可是卻不是他真正想要的。

 

閱讀全文:

精準預測的訊號與雜訊

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋