Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

大量資料即時處理

科景_96
・2011/02/10 ・513字 ・閱讀時間約 1 分鐘 ・SR值 515 ・六年級
相關標籤: 巨量資料 (5)

Original publish date:Aug 29, 2010

編輯 HCC 報導

MIT Technology Review 雜誌自1999年起,逐年以TR35專欄甄選一群年紀低於35歲的創新者,表彰其在科技發明及研究上的前驅與突破;研究領域涵蓋醫療、電腦運算、通訊、電子、奈米科技等。2010年8月甫公佈其評選的35位青年創新先行者,大量資料即時處理為其中一個創新領域。

大量資料即時處理技術創新者為Richard Tibbetts,年齡:30歲,學歷:MIT 電腦科學碩士,服務公司:StreamBase Systems

-----廣告,請繼續往下閱讀-----

無論是企業界、政府部門、研究單位經常都需處理瞬息萬變大量湧進的資訊,資訊的即時處理成了一個大難題,傳統上是先將資訊儲存到資料庫再進行處理,不過資料庫不善於即時處理資料,使用者必須等待所有的資料累積完畢,方能執行下一步驟。

身兼StreamBase Systems開創元老以及技術執行長的Richard,研發了一套資料處理系統。此套圖形事件流程電腦語言﹝graphical event-flow language﹞StreamSQL EventFlow,擴展標準的SQL查詢模型﹝SQL query model﹞與運算子﹝Operator﹞,得以處理即時與歷史資料流﹝historical data streams﹞,將大量變化的連續性輸入資料精粹到進行決策所需的訊息,其結果可應用於股票交易、趨勢指標、國防應用等。

StreamBase Systems公司專門開發複雜事件處理﹝Complex Event Processing, CEP﹞軟體,處理高流量,低延遲﹝low-latency﹞事件。StreamBase Systems 同時被 MIT Technology Review 評選為2010年最具創新力的50家企業之一。

參考來源:

-----廣告,請繼續往下閱讀-----

 

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【Gene思書齋】跟著大數據學習教育
Gene Ng_96
・2015/02/03 ・2892字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

A1500526Big_Data_cover-230x346

在這裡介紹過了牛津大學網路研究所教授麥爾荀伯格(Viktor Mayer-Schonberger)和《經濟學人》(The Economist)雜誌資料編輯庫基耶(Kenneth Cukier)的《大數據》Big Data: A Revolution That Will Transform How We Live, Work, and Think)這本好書,他們探討大數據(巨量資料)是什麼碗糕,大數據有什麼意義,還有大數據將如何改變我們的生活,對經濟、社會和科學會帶來什麼影響,我們又能如何趕搭上這波新潮流,如何懂得保護自己,避免個人資料和隱私受到侵害等等(請參見〈快準狠的大數據〉)。

這次他們把魔爪…哦不…觸手伸到了「教育」,寫了這本《大數據:教育篇:教學與學習的未來趨勢》Learning with Big Data: The Future of Education),因為跟據他們的觀察,大數據正在跨入教育體系,對於全世界的教學與學習活動,勢必將產生極為深遠的影響,因此在這本書就是要談談大數據將如何改變教育。

他們舉出「大規模開放式線上課程」(MOOC)、可汗學院(Khan Academy)、Duolingo語文學習網站等案例。雖然這些線上課程早已不是新聞了,可是他們要再進一步告訴我們,當大數據的時代來臨,教育就不只 是上課聽講、讀書考試打成績、或是輕易選修更多科目而已。透過大數據,我們可以擁有史上最強大、具實證效果的工具,能夠瞭解「誰在學習」、「怎樣教學」與 「如何學習」這些重要的課題。

大數據讓我們前所未有的方式和觀點,看到究竟什麼有用、什麼沒用,以前不可能觀察到的種種學習阻礙,現在有辦法一一化解,大幅改善學生的學習成效,顛覆傳 統教學模式,造福更多學子。課程可以依據學生個人的需求做調整,真正做到因材施教,因為教師可以透過學生在線上學習時不經意的行為來判斷成效、調整教學內 容和順序,以及多次複習會造成學習瓶頸的困難觀念,甚至即時因應學生的反應而出招等等。教師的工作不會被教學網路和影片取代,而會變得更有效益、也更有 趣,因為能夠更專注針對學生作個人化的指導。

-----廣告,請繼續往下閱讀-----

他們也認利用大數據分析,學校領導者和政府決策官員,也能用更低的成本提供更多教育機會,這些正是減少社會貧富差距、讓社經階層流動的重要因素;社會大眾 也能夠知道「學習」應當是怎麼一回事,打破教育主管機關和學校的壟斷地位,從而讓教育的本質和體制徹底翻轉。他們主張,大數據時代正是不斷學習的時代、翻 轉教育的時代!

不過大數據的應用是雙面刃,我們可能會把相關性誤判為因果,而且如果學生的個資無法被保護,其舊學習歷程被曝光,可是會影響日後的升學與就業。關於這方 面,《大數據:教育篇》引用了《大數據》的許多觀念和案例,例如誤將相關性當因果以及個資保護等等,所以建議也要去讀《大數據》這本書。

不過,盡信書不如無書,作者在西方遇到的問題,和我們在東亞遇到的,有很大的差異。最大的差異有兩點。

一個大差異,在一張很多網友在臉書分享的圖表清楚表達出來:圖裡有兩條軸線,第一條軸線為「歐美人才養成」,而第二條則是「台灣人才養成」,軸線將學習生 涯分成「學前」、「小學」、「國中」、「高中」以及「大學」等五個階段。「歐美人才養成」各階段的學習目標相當明確並且不同,學前做好生活管理、小學探索 環境、國中要開始找尋自己的夢想、高中則要面對生涯抉擇,而到了大學就要開始培養實務能力。

-----廣告,請繼續往下閱讀-----

台灣人才培養的軸線,從「學前」一直到「高中」生涯,全是「讀書考試」,一直到「大學」時期,才要將「生活管理」、「探索環境」、「找尋夢想」、「生涯抉擇」以及「培養實務能力」一次統統完成,其中當然還少不了「讀書考試」。

歐美的教育偏向素質教育,相對於偏重考試的應試教育而言,較為注重體育、藝術能力和多元智能的培養,而真正的素質教育,目的在於讓學生能發揮個人潛能,各 展所長,並培養良好的品格,並不局限於學術上的才能。台灣的教育能夠篩選出很會考試(甚至還不見得會「讀書」哦)的學生,連公務系統都極度依賴考試,雖然 有好些公家工作幾乎不需要考試的技能。可是因為考試實在太浮濫,使得疲於奔命的教師能好好用心出題的時間都被嚴重壓縮,連有沒有認認真真地好好考考學生各 方面的學術能力都成問題,更甭提學術能力也非社會所需的全部。

另外一個差異是,台灣的教育太過注重標準答案,可是嚴重扼殺學生的創意。但是歐美的教育很注重個人的啟發,所以頂尖的人才在歐美的教育環境,往往可以更容 易發揮出他們的潛力,表現出他們充沛的創造力。可是他們的對素質一般的學生,反正做得不見得比台灣好。台灣的教育環境,讓學生拚命練習考試、練習考試再練 習考試,讓學生的程度比起歐美整齊的多。以我和朋友們在美國唸博班當助教的經驗來看,台灣學生的程度差異在一個班中,算是比較整齊的,成績優劣幾乎憑個人 努力付出多寡。可是在美國大學,尤其是公立學校,大部分的學生,在數理方面真的很不行!

舉個例子來說,我們常常看到學生在實驗數據中,他們嘗試要把上噸的鹽溶在小燒杯裡,或者把實驗桌上的小鉛球射上火星,因為連單位都搞錯了Orz 有位老師在普通生物學考題上問學生什麼是pH值,居然有四分之一的學生選擇「它不存在」;還有老師指出,大四的學生,居然有兩成回答果蠅的基因數量是小於 一,另外兩成寫無窮大(正確數目大約是一萬多),他說那四成學生基本上是「完全的廢物」;還有很多搞笑的事,真是罄竹難書。面對這些學生,教授們的態度往 往是「放棄」,可是大數據或許能讓這情勢反轉。

-----廣告,請繼續往下閱讀-----

台灣的教育環境,往往比歐美更善待中上程度的學生,用嚴酷的練習考試來磨練他們的能力,可是卻嚴重地忽略了頂尖人材的教育,而且也幾乎完全沒有為培養社會 各界的領袖所準備。台灣的大學,就算連頂尖的台大和清大,大致上都還是停留在訓練優異的幹部為主,教授的教學方式和內容,和其他大部分的大學幾乎沒差太 多,頂多深度有一些差異而已。可是,就拿美國來說,頂尖大學的目標是在培養頂尖的領袖!一流大學的目標是在培養社會各界菁英、二流大學的是在培養優異的幹 部、三流大學的是在培養良好的基層員工等等。所以,很不幸的,台灣的大學可能在培養優異的幹部上很稱職,可是要成為社會各界菁英,就只能靠學生自己的努力 和見識,領袖的話就算了。

要培養出優異的幹部,大數據的應用應該有其優勢,可是社會菁英和領袖的培養,大數據或許無用武之地,因為大據數無法告訴你過去未曾發生的事情,也無法預測 和產生出創新,因此對於台灣的教育,大數據可以提高學生的學業,可是五育的訓練,以及領袖和社會菁英的培養,我們可能先不要去思考什麼大數據之類的,先從 整體教育環境下手才比較實際。

關於教育,這裡只能點出冰山一角,我也沒有標準答案,但請容我在此私心介紹一位好友謝宇程在商周的高人氣專欄「學與業壯遊」,裡頭有很多很多問題,我們必須繼續思索。

台灣教育問題多如牛毛,不過我們不必對台灣教育灰心,看了以下影片,你應該會很感動,希望還是在的:

-----廣告,請繼續往下閱讀-----

本文原刊登於【GENE思書軒】,並同步刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
0

文字

分享

0
0
0
滅火新趨勢:資料探勘直搗黃龍
李柏昱
・2014/04/21 ・1573字 ・閱讀時間約 3 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

 

荷蘭阿姆斯特丹的災害風險地圖。(資料來源:Qliktech)
荷蘭阿姆斯特丹的災害風險地圖。(資料來源:Qliktech)

在紐約、倫敦、阿姆斯特丹或是其他任何一座現代大型城市中,數百萬棟建築聚在一塊兒,而每年總有幾千棟會被大火吞噬。消防隊有沒有可能事先預知哪一棟建築將竄出火花?有關部門又該如何決定資源的配置以因應潛在的嚴重意外?
 
過去看似無解的難題,巨量資料時代的來臨與資料探勘(data mining)技術的發展,或許帶來解決問題的一道曙光。
 
巨量資料時代
 
巨量資料在當今諸多領域都是熱門話題。用最簡單的話講,巨量資料就是數據資料的資料量大到難以進行分析、搜尋或是處理。目前我們的社會正以爆炸性的速度產生各種資料。根據IBM的報告,自人類有歷史以來,有90%的資料是在過去的兩年中被創造出來。
 
巨量資料主要來自電腦、智慧型手機、社群網站、各種錄影設備以及網路。不過隨著電腦運算能力與時俱進、軟體逐漸高度專業化,我們開始有能力處理並使用這些大海般的資料數據,也就是能開始進行資料探勘的工作。
 
資料探勘
 
回到火災的話題上,利用新科技與新軟體,各地消防部門的風險管理員得以分析一拖拉庫的資料數據。透過整合建築物、街道、水路、運輸管線、貧窮、屋齡、空屋、有無電氣問題、灑水器數量與位置、有無電梯等等與火災相關的資訊,與消防意外事件數、火災傷亡人數疊合,便能製作出一份「災害風險地圖」。
 
這張地圖對於消防部門助益極大。首先,消防部門能有效部屬應對不同事故所需的資源,例如化學火災或車禍,在災害發生第一時間就擁有正確的救難設備與資源。
 
其次,各地區消防員的訓練能依照各地災害風險的不同量身打造;進行例行性的消防檢查時,消防員也能從中得知哪些是風險最高的建築物,需要優先拜訪。而在此之前,消防員的例行檢查都是隨機進行的。
 
第三,對於那些住在災害風險高的建築物的居民,消防部門也能提供他們如何提升安全指數的改善建議。
 
最後,這套系統能作為消防部門決策的依據,根據風險高低制定救災優先順序。風險最高的地區需要最短的救災反應時間。同時,災害風險地圖也能協助指揮救災資源的配置。
 
不過,一切才剛開始,防災地圖未來有十足的發展可能性。比如說,未來消防車上將配置能顯示技術資訊與風險資料的螢幕,從社群媒體上取得資料也是考慮中的方案。
 
目前消防部門碰上所有推動防災工作的人都會遭遇的問題:他們無法證明火災發生次數的下降是否為災害風險地圖的功勞,某些「原本」應該付之一炬的建築,是否因為這份地圖而被拯救。或許只有透過長期的追蹤,這份火災的風險地圖才能在持續下降的數據當中,展現它的價值。

(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿/2014年/3月)
 
責任編輯:鄭國威│元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

-----廣告,請繼續往下閱讀-----
延伸學習:
-----廣告,請繼續往下閱讀-----