0

0
0

文字

分享

0
0
0

天然氣:意外之財—《寫給未來總統的能源課》

azothbooks_96
・2014/04/28 ・3130字 ・閱讀時間約 6 分鐘 ・SR值 516 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

kk0371309英文的Windfall一詞源自於森林。在強風過後,不需太費力就可以容易收集到許多從高處掉落下來的樹枝。因此最原本的意思就是便宜、容易取得的能源。

在能源面貌上,最重要的新發展就是發現了頁岩(一種沉積岩)中豐富的天然氣的開採方式。這是一大筆新的意外之財。雖然我們早就知道頁岩裡蘊藏大量的天然氣,但是符合經濟效益的開採方式到最近才發展出來。這些可供開採的頁岩天然氣,是攸關美國未來的能源安全以及全球暖化最重要的新因素,也會對接下來數年 甚至數十年的經濟與政治決策產生重大的影響。

2001年時,根據美國能源部的資料,天然氣的證實蘊藏量不只有192兆立方英呎。由於美國每年開採20到24兆立方英呎的天然氣,因此應該在2010年之前天然氣就會全部用完。但是事實上, 到了2010年時,美國天然氣的蘊藏量已經增加到300兆立方英呎。 然後只不過經過了一年,美國能源資訊署(US Energy Information Administration)2011年估計的天然氣蘊藏量就暴增到862兆立方英呎。而一些跟我談過的天然氣專家相信,實際上的數字應該接近3000兆立方英呎或是更多。用意外之財來形容簡直是太客氣了。這些天然氣更像是美國老漫畫《亞比拿奇遇記》(Li’l Abner)裡一種奇怪的生物夏姆(shmoos),你用得越多,它們就變得越多。

怎麼會這樣呢?答案可能比你想的簡單:美國能源部認為在進行估計時,應該要保守一點,必須是符合高標準的天然氣才能算 進證實蘊藏量裡。天然氣公司則採取不同的標準,他們只希望氣井可以帶來良好的收益,所以會先找出手上可能最具生產力的天然氣田,然後進行開採。只有已經發現且可以開採供氣的天然氣田,才會被美國能源部歸類成證實蘊藏量。

1966 年時美國天然氣有 1.6% 來自頁岩,到了2005年成長到4%,而2011年這個比例已經達23%。目前開採自頁岩的天然氣占全美天然氣產量的30%左右。這是一股正在進行中的天然氣熱,和過去的淘金熱一樣令人興奮且帶來豐厚的財富。《紐約時報》的形容是:「『它們就在那』山丘蘊藏有天然氣」。某種革命性的變革正在發生。圖表II.4 顯示了天然氣蘊藏量壯觀的成長歷程。

圖表II.4  美國頁岩天然氣產量的驚人成長。圖標所列為地質構造的名稱和所在地。
圖表II.4 美國頁岩天然氣產量的驚人成長。圖標所列為地質構造的名稱和所在地。

新的蘊藏量非常驚人,不只改變了能源面貌,還改變了全球政治。德州與加州原本建造用來進口天然氣的碼頭,已經重新改裝 成出口用。歐洲亟欲取得這些天然氣,以降低對俄羅斯天然氣的依賴。法國也蘊藏著大量的頁岩天然氣,現在每個國家都正在重新進行地質勘察。

由於天然氣的產量大增,某些產業專家相信天然氣的井口價格在未來的10到20年,都會維持在低檔,每千立方英呎4美元或更低。 在這本書撰寫時(2012年初),價格為2.5美元。(你可以從美國能源資訊部網站取得最新的報價)。對消費者而言,天然氣的成本大約是每千立方英呎12美元,但這個價格可能還會再下跌。你用同樣的價格可以取得3.4加侖的石油,但是天然氣可以提供2.5倍的能量。

為什麼美國不趕快轉換成天然氣?許多人已經在這樣做。美國許多大型電力公司已經開始以天然氣發電來取代燃煤發電。使用汽油的車子不需要更動引擎就可以容易改裝成天然氣燃料。最早改用天然氣的是卡車和計程車駕駛,他們對燃料的價格非常敏感。在美國,大約13萬台卡車和計程車已經改用天然氣。開發中國家對價格的敏感度比美國更高,在印度、中國和巴西已經有超過700萬輛車子改用天然氣而非汽油或柴油來作為燃料。他們無法負擔價格高昂的玩意。但美國的能源基礎建設非常龐大,因此需要時間轉換。天然氣的密度比汽油低,即使經過壓縮,所占的體積仍然是汽油的三倍。 因此大型的交通工具,像是卡車或公車,最容易進行轉換。壓縮後的天然氣每加侖所能提供的能量是電池的10倍,也將是純電動車真正的競爭對手。

天然氣在未來幾年(或許幾十年)將會是我們主要的「替代燃料」,而且產油國已經開始擔憂天然氣帶來的競爭。沙烏地阿拉伯的瓦利德王子就曾經在2011年5月提到,他急於提供更多石油來促使石油的價格下跌。在過去,沙烏地阿拉伯通常都宣稱他們之所以德加石油供應量,是為了讓西方經濟保持活力,但是王子這次似乎更為坦率。他說(可能無意間違反了沙烏地的安全規定),「我們不希望西方國家去尋找替代能源,因為很明顯地,當石油的價格越高,他們就越有誘因去尋找替代能源。」對沙烏地阿拉伯而言,危險之處在於我們未來會發展出適合其他能源的基礎設施,因此最好讓油價維持在低檔,使得石油蘊藏量低的國家不去發展使用替代燃料的方法。

主要由甲烷所組成的天然氣,提供了美國將近1/4的能源需求。我們在家裡瓦斯爐用這種嗆鼻的氣體來烹煮食物,事實上天然氣是無臭無味的氣體。但是,如果忘了關瓦斯就會很危險,因此瓦斯公司添加了少量的硫醇,讓瓦斯聞起來像是蔬菜腐爛產生的臭味。

對在地底工作的煤礦工人來說,天然氣是可怕的敵人;我的祖父就曾經是賓州的煤礦工人。天然氣會吸附在煤炭的孔洞中,一旦氣穴破裂使得天然氣洩漏到礦坑中,就會造成工人因為窒息或爆炸喪生。早期在礦坑中會養金絲雀作為這種危險氣體以及一氧化碳的感測器。今天我們仍然會從煤礦中開採天然氣,通常是來自埋藏於地底深處、但礦脈太薄不值得開採的煤礦。這種煤層氣大多是以管子注入加壓後的水把煤礦壓裂以使天然氣釋出;現在也是用同樣的方法從頁岩中開採天然氣。

過去我們曾經使用一種非天然的氣體─煤氣,來點亮城市和家家戶戶,這種氣體是煤炭與水反應後所產生。煤氣主要是由氫氣 和劇毒的一氧化碳所組成。發現大量的甲烷後,這種「天然」的氣體就成為更安全也更便宜的選擇。用「天然」這個詞,一部分是出於行銷上的考量,好讓人們在家中使用時聽起來比較不危險(過去的確很危險)。

美國在賓州以及隨即在德州發現石油時,天然氣不過是種副產物。這些天然氣原本溶在地底的石油裡,當石油被抽取到地面上壓 力減低之後,天然氣就釋放出來。過去這些「濕氣體」對油井公司來說是種困擾,因為無法用卡車或火車來運輸(當時還沒有將天然氣液化的技術),於是大多數的天然氣都在井口被燒掉。在部分開發中國家,仍然使用這種方式來處理油井天然氣,如圖II.5所示。

4690322325_d90866dc6a_z
圖 II.5 墨西哥灣的油井,仍燃燒天然氣。 (圖片來源:Deepwater Horizon Response@flickr)

目前已經不鼓勵用這種方式來處理油氣,因為這會增加排放到大氣中的二氧化碳,美國還發射了一具衛星來偵測世界各地燃燒油氣的情形。這具衛星取得的影像顯示,奈及利亞的油田仍然廣泛使用這種方式來處理油氣。對油田的擁有者來說,燒掉油氣在經濟上很合理,但是對那些缺乏能源、卻看得見火焰熊熊燃燒的鄰近民眾來說特別殘忍。目前全世界生產的天然氣中大約有5%是直接燒掉。

燒掉油氣現在已經被許多國家視為非法。從經濟上來看也有很好的理由避免燒掉油氣:這些天然氣可以打回油井裡,壓取出更 多的油,以提高所謂的「原油採收率」,並增加利潤。最壞的情況下,打回去的天然氣也可以存放在油井裡以供未來出售。這些天然氣也可以在冷卻到負162度後液化。天然氣冷卻液化後的體積可以縮小到原本的1/750,藉由冷凍油輪來大量運輸。卡達發展出來的超級油輪可以載運超過10萬噸天然氣。有些人擔心這麼巨大的油輪會成為恐怖份子的潛在目標。

事實上,天然氣本身並不會爆炸,必須要與空氣以適當的比例(5至15%)混合才會爆炸,並不會輕易發生。但是一種可能的危險是有些液化天然氣可能會接觸到水(或許因為恐怖份子的炸彈)而突然受熱成為氣體(專家稱之為「快速相變化」)。天然氣在氣態下的體積是液態的750倍,這種快速的膨脹是一種「物理性的」或「冷的」爆炸,可以進一步破壞油輪,然後釋放出更多的液態天然氣。

 

摘自PanSci 2014四月選書《寫給未來總統的能源課》,由漫遊者文化出版。

文章難易度
azothbooks_96
38 篇文章 ・ 12 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

4

31
4

文字

分享

4
31
4
別用愛了,用冰發電吧!——可燃冰的發現、應用及油氣能源的未來
Chih-Chen Huang_96
・2022/02/23 ・6224字 ・閱讀時間約 12 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

能源與環保間的平衡在全球一直都是十分火熱的議題。火力發電、核分裂發電等高效率的發電方式,或許會對環境及生物造成永久危害;風力發電、大陽能電池等綠能,受限於天候而無法廣泛應用;乾淨又有效率的核融合發電仍在開發階段,還不到可以商用的程度。那麼,通往乾淨能源的這條路,是否就這樣被插上此路不通的標示牌呢?當然不!因為可燃冰為我們另闢了一條蹊徑。

圖一 :正在燃燒的可燃冰。圖/參考文獻 1

那麼,可燃冰究竟是什麼呢?是否如同字面上,是一種可以燃燒的冰?如果是,是何種機制會使冰能被點燃;如果不是,那麼它是怎麼形成冰晶狀態的呢?若你好奇的話,請讀下去吧!本篇會從可燃冰本身、其應用與開採問題,全面地介紹這種新能源。

可燃冰的性質

可燃冰又稱為「天然氣水合物」,其中,甲烷氣體若佔總天然氣的 99%,則稱為「甲烷水合物」。直接觀察它被點燃的樣子,就像是一塊能燃起火焰的冰塊,這也是「可燃冰」一稱的由來。然而,確切來說,這顆「冰塊」其實是水和甲烷氣體在低溫高壓下混合形成的類冰物質。也就是說,可燃冰其實不是冰,而是由水分子組成的一個個「水籠」。如圖二,籠中包含大量的甲烷氣體,因此便不難理解它被稱為「甲烷水合物」的原因。或許你十分好奇水籠的模樣,不過在那之前,我們必須先談談組成水籠的柵欄——氫鍵。

圖二:可燃冰是由水分子組成的一個個「水籠」。圖/參考文獻 2

(一)、氫鍵

氫鍵為組成可燃冰結構舉足輕重之角色,而為介紹水籠及避免混淆重點,氫鍵概念皆舉水(簡式 H2O)為例。顧名思義,氫鍵是一種以「已結合 1 個氧原子的氫原子」為中心,與另一個氧原子所形成的「作用力」。沒錯,氫鍵並沒有產生實際的鍵結,本質上反而是一種電磁力。這個概念或許有點抽象,不過我們可以用小朋友吃蛋糕的例子來理解。

現在,老師分蛋糕給一群小朋友,高年級的小朋友可以分到比較多塊且口味不同的蛋糕,而低年級的小朋友則只有一塊蛋糕。分完蛋糕後,低年級的小朋友會跑去坐在大哥哥旁邊吃蛋糕,因為當他拿出一半的蛋糕分享時,大哥哥也會分享一半的蛋糕給他,如此一來,他們都能吃到 2 種口味的蛋糕。若低年級的小朋友還想再和別人分享一次,他就必須擁有第二塊蛋糕。然而,我們都知道他已經沒有多的蛋糕了,所以他會跑到另一個擁有蛋糕的大哥哥旁邊看著他,希望這個大哥哥能和他分享蛋糕。

看完這個故事,我們可以把蛋糕替換成電子、低年級生替換成氫(價電子數為 1),而擁有很多蛋糕的大哥哥即為擁有許多電子的氧(價電子數為 6)。因此,如圖三(A)所示,當氫和氧各提供 1 個電子時,便會形成共價鍵。同時,已將電子用光的氫,會與另一顆帶有 2 個多餘電子——或稱作「孤電子對」(lone pair)——的氧形成氫鍵。

圖三(A):氫鍵結構。圖/黃之辰繪

其形成原因則如圖三(B),當氫用掉唯一的電子後,部分氫原子相對帶正電,會與另一個擁有孤電子對的原子互相吸引,故部分原子帶負電的氧原子互相吸引。這個吸引力就是氫鍵,並且由於其成因,我們可以說氫鍵就是一種電磁力。

圖三(B):氫鍵形成原理。圖/黃之辰繪

(二)、水籠

當許多個水分子以氫鍵結合時,水籠便形成了。

圖四:水分子間的氫鍵。圖/參考文獻 3

事實上,水籠分為許多種類,有結構 Ⅰ 型水合物、結構 Ⅱ 型水合物以及結構 H 型水合物。如下方圖五,在以單位晶格的尺度下觀察,結構 Ⅰ 型為的水合物是以 2 個五角十二面體(512)的小籠,和 6 個十四面體(51262)的大籠所組成。

這時,你可能會好奇:為什麼是這個組合呢?讓我們來想想拼圖。當我們拿起一塊拼圖,會發現它會有凸出、凹陷,或是平平的不凸出也不凹陷等 3 種樣式的「邊」,或許是 4 個凸出、3 個凸出 1 個凹陷、2 個凸出 2 個凹陷,或是 1 個平平的邊加上 3 個凹陷……。這時,如果我們拿起一塊有「4 個凸出」的拼圖,那麼我們能把另外一塊也是 4 個凸出的拼圖拼在原本的那塊上嗎?

顯然無法。因此,如果我們要將拼圖拼起來,就需要拿出另外 4 片有凹陷的拼圖,各接在原本那塊拼圖上,才能逐漸將這副拼圖拼完。這個「拼拼圖」的概念也就是為什麼水籠結構會需要不同的立體形狀組成了,因為這些不同的形狀負責「鑲嵌」彼此,從而形成一個完整的、沒有空隙的拼圖,也就是這個堅固的水籠。

接下來讓我們繼續介紹另外 2 種結構。結構 Ⅱ 型則以 16 個五角十二面體,加上另一種十六面體(51264)的大籠結合而成;結構 H 型則分別由 2 種小籠—— 3 個五角十二面體,及 2 個十二面體(435663)——與二十面體(51268)大籠組成。其中,不論是大籠或小籠,每個籠中皆包含 1 個甲烷分子。

值得注意的是,甲烷水合物屬於結構 Ⅰ 型水合物,且其分子式為 CH4·8H20。理論上來說,一單位晶格內應含有 8 個甲烷分子與 64 個水分子。然而,由於可燃冰晶體中的水可與鄰近的 2 個水籠共用,因此一單位晶格內實際上只有 46 個水分子,而這也是當我們將可燃冰轉化後,可以產生大量天然氣的原因。

圖五:各類水籠結構及組成。圖/參考文獻 4

二、可燃冰的誕生

上文有提到水和甲烷能在低溫高壓之下生成可燃冰。那麼,是什麼環境才會包含大量的水、足夠的天然氣,同時又有低溫高壓的特性呢?沒錯,就是海洋!現在,我們已經有足夠多的水了,但要如何在海中找到大量的甲烷呢?以大西洋的布雷克海脊(Blake Ridge)為例,含有甲烷的沉積物稱為「氣水化合物穩定帶」(GHSZ,GasHydrate Stability Zone),大約厚 300 至 500 公尺,且位於約 190 公尺至 450 公尺的中深度範圍海域[參考文獻 5]。在這些沉積物的孔隙中,有許多以溶解狀態存在的甲烷。那麼,問題又來了,這些深海礦床是怎麼產生甲烷的呢?答案就是——細菌!

在深海中存在著 2 種細菌:好氧細菌和厭氧細菌。從他們各自的名字來看,很明顯可以知道好氧細菌會進行有氧呼吸,也就是它們會以氧的化學反應來獲得能量。反之,厭氧細菌不用以有氧呼吸來生存,意即它們可以生存在沒有氧的環境中。

在深海礦床中,沉積物孔隙中的水在幾公分的深度便是缺氧狀態的,且由於這個區域的水域包含了沉澱率高、有機碳含量豐富、環境酸鹼值適中等條件,厭氧細菌便會開始作用在這些沉積物的有機碳物質上,並產生甲烷。 

事實上,大陸地區也可以生成可燃冰,但是蘊含量極少,大約只有 1% 的可燃冰儲存在陸域[參考文獻 9]。其原因或許和組成陸地的砂石成分有關,因為科學家採樣之後的結果顯示,這些生成於陸域的甲烷水合物僅會存在於深度 800 公尺以下的砂岩或粉沙岩岩床中。同時,存在於砂石縫隙中的化合物,會被熱力或微生物分解;然而,重量較重的烴類——也就是組成天然氣的原料,卻會在較輕的化合物被分解完之後,才有機會被分解[參考文獻5]。可以看出大陸生成甲烷水合物的條件極為苛刻,因此,以這種方式形成的可燃冰,目前只存在於西伯利亞和阿拉斯加的永凍土中。

三、能源議題的救世主?

可燃冰在近幾十年突然出現在人們的面前,一躍成為炙手可熱的能源議題新寵兒。事實上,人類早在 1810 年就已經於實驗室中發現天然氣水合物這種物質,只不過受限於當時的時空背景以及科學發展進程,1934 年才在美國的輸氣管道中,發現天然的甲烷水合物這種「可以燃燒的冰塊」。直到 1968 年,蘇聯科學家才終於在西伯利亞發現了天然氣水合物礦藏[參考文獻 6],而在此期間,人們普遍認為天然氣水合物大多只會出現在太陽系外圍的低溫區[參考文獻5]

那麼,這種神祕的、甚至連科學家都還沒完全搞清楚生成機制的化合物,究竟是怎麼在這場能源大賽中「殺出重圍」的呢?這和可燃冰的轉化率、蘊藏量、能源危機,甚至人類環保意識的提升都有不可或缺的關係,可謂是天時地利人和的結果。

然而,目前可燃冰離完全商用仍有很長的一段路要走。先不提這個,我們來談談轉化率,顧名思義就是「可燃冰轉換成天然氣的效率」。前面有提到,當可燃冰轉化後,即可產生大量天然氣,而若我們精確地看數字,就可以發現 1 立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣[參考文獻 6]

這個轉化率著實驚人,因為若拿同等體積的天然氣和可燃冰相比,可燃冰能產出的能量是天然氣的 150 至 180 倍!所以,若可燃冰能順利轉為商用,無疑能使「運輸天然氣加蓋地下管線」、「天然氣存量減少以致價格上漲」等問題迎刃而解。 

不過,某種能源能是否能順利轉為商用,還有一個重要的條件——蘊藏量。目前,人類就正在面臨石化燃料存量枯竭的問題,然而人們的生活早已和石化燃料密不可分,小至織品原料,大至交通工具,或許都會面臨一場重大的革新,而這些無疑會造成經濟動盪,故這是十分棘手且嚴峻的狀況。

那麼,可燃冰的蘊藏量究竟能供人類使用多久呢?根據美國的天然氣需求量來看,僅開發美國本土外海的天然氣水合物,就足以供美國人使用 2000 年[參考文獻 9]!而台灣在西南海域發現的存量,可以供台灣使用約 40 年[參考文獻 10]!科學家也預估,可燃冰的天然存量大約是天然氣的 2 至 10 倍[參考文獻 5]

由於可燃冰驚人的轉化率、龐大的蘊藏量,再加上燃燒後不會產生殘渣等特性,造成的汙染相較於現今正在使用的各種燃料來說減少許多。在人類盡力追求經濟產能與環保平衡的今天,無疑是救世主一般的存在。

四、如何開採可燃冰

可燃冰看似是目前能源議題的最佳解,但我們對它的瞭解仍遠遠不夠,因為我們還不知道如何快速、安全且大量開採。自 40 年前第一次發現礦藏至今,科學家不斷探索、採集並分析可燃冰這種新興燃料,即使瞭解仍十分有限,但也已經發展出一些鑑別以及開採的方法。除了以前傳統、直觀(但是相對來說更低效且粗魯)的加熱法及減壓法以外,甚至有了更新型的開採方法。不過,在介紹新型方法前,我們可以先從較傳統的方法開始,以便更加瞭解開採可燃冰最基本的模型與原理。由於此種方法較為直觀,篇幅會較為簡短。

以下分別介紹 3 種傳統與新型開採方法:

(一)、傳統——加熱法與減壓法

加熱法,顧名思義就是將可燃冰層以對流法、電磁加熱法[參考文獻 6]等直接升溫,將可燃冰分解為天然氣與水,並且直接以管線收集天然氣。減壓法則是以管線導出可燃冰層下方的氣體或流體,使可燃冰層的壓力變小。此時,可燃冰中的「冰」就會因為壓力下降而液化成為水,使得天然氣被釋放。

(二)、新型——二氧化碳置換開採法

這個方法可說是傳統加熱法的進化型態,兩者都是以同樣的原理運作,即:使可燃冰升溫,讓水合物中的天然氣釋放出來,並加以收集。那麼,二氧化碳置換法為什麼是進階版的加熱法呢?原因就在於這種方法能在開採可燃冰的同時,將一部份的二氧化碳轉為水合物,封存在海底。以環保的角度來說,簡直可以稱得上是高收益。

此方法的核心概念是利用天然氣水合物和二氧化碳水合物保持穩定時的壓力差進行開採,意思就是,當我們把壓力控制在特定範圍下,天然氣水合物就會分解,而適合這個壓力的二氧化碳水合物就會形成[參考文獻 6]。圖六是二氧化碳置換法的示意圖,圖六(A)是開發前蘊藏可燃冰礦藏的海床。開採時,如圖六(B)所示,我們需要在可燃冰礦層的上方及下方都注入二氧化碳,下方那一層是主要運作的區域,而上方則用以阻隔並穩定海床。

接著,因為壓力被控制在適合二氧化碳水合物生成的範圍,因此當這種水合物逐漸生成並放熱時,最靠近底層的可燃冰就會被這些熱量分解,轉化出大量甲烷。此時如圖六(C),這些甲烷會被導管收集,所以下方的二氧化碳就會上移、填補空缺,然後持續生成二氧化碳水合物,使更多的可燃冰分解、釋放甲烷。在這種連鎖反應下,我們就可以達到在不斷釋放可燃冰中甲烷的同時,不斷(以水合物的形式)封存注入至海床中的二氧化碳[參考文獻 11]

圖六:以二氧化碳封存置換甲烷氣示意圖。圖/參考文獻 11

(三)、新型——固體開採法

最初的固體開採法是直接採集可燃冰固體,並將可燃冰固體移至淺水海域後加以分解,因為若是以物理或化學方法就地分解,會產生消耗能源,而且經費昂貴。之後,固體開採法也衍生出了另一種更進階的方式,稱為「混合開採法」。這種方法是將可燃冰就地轉為固體、液體混合的狀態,再將包含了可燃冰固體、液體及氣體的「泥漿」以導管傳輸至海平面上作業,藉此取得天然氣[參考文獻 6]。這種不用再將礦產運送至淺水區的方式顯然更加方便操作,且以導管運輸的方式能進一步減少可燃冰的損耗。

五、台灣的可燃冰及各式能源之比較

相對於其他科技、科學競賽來說,台灣在可燃冰的發展上,雖然起步較晚,仍然有相當亮眼的成績。2018 年,科技部的第二期能源國家型科技計畫(NEP-II)就在臺灣西南外海採集到天然氣水合物。而誠如主導計畫的中央大學地科系許樹坤教授所說:「台灣因沒有自主能源,更顯珍貴。」教授說:「台灣是一個能源缺乏的島嶼,99% 的能源都仰賴進口。科學的新發現,若能配合工程技術開發,就能帶來新契機。台灣西南海域蘊藏豐富,預估可用上 40-50 年,目前日本和中國大陸都已試開採[參考文獻 17]。」若是台灣能成功開採並使用可燃冰,或許便能在這場白熱化的能源議題中,找到一線生機。

各式能源之比較表。資料來源/參考文獻 16

參考文獻

  1. Frozen Heat: Exploring the Potential of Natural Gas Hydrates.(2017, May).Office of Fossil Energy and Carbon Management.
  2. Sara E. Harrison. Natural Gas Hydrates. Physics 240, Stanford University, Fall 2010.
  3. Model of hydrogen bonds (1) between molecules of water. Wikipedia.
  4. Juwon Lee and John W. Kenney III. Clathrate Hydrates. IntechOpen.
  5. 甲烷水合物,維基百科。
  6. 可燃冰,百度百科。
  7. Kenneth C. Janda. Gas Hydrate Structure.
  8. 冰與火戰歌,經濟部石化產業高值化推動辦公室簡報。
  9. 解開可燃冰封印,科學人雜誌。
  10. 西南海域可燃冰若開採學者:可供台灣使用逾40年,國立中央大學。
  11. 以二氧化碳封存置換甲烷氣示意圖,中央地質調查所。
  12. 超流體,維基百科。
  13. 固液共存,百度百科。
  14. Coal – Types, Uses and Formation
  15. Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2010 – 2020,SAS Output (eia.gov)
  16. 各式發電比較,國立交通大學。
  17. 重大突破!中大地科團隊首次在台灣海域鑽獲「可燃冰」,國立中央大學。
所有討論 4
Chih-Chen Huang_96
1 篇文章 ・ 3 位粉絲
目前就讀中央大學光電系。喜歡閱讀,還有邊境牧羊犬。

0

0
0

文字

分享

0
0
0
供應鏈中的甲烷外洩,抵銷了天然氣的減碳效益
廖英凱
・2018/07/21 ・2033字 ・閱讀時間約 4 分鐘 ・SR值 588 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

2018 年 6 月,非營利組織「環境保衛基金(Environmental Defense Fund)」與來自 15 個研究機關的研究者,於《科學(Science)》期刊上發表美國石油與天然氣供應鏈甲烷外洩狀況的研究。該研究認為由於石油與天然氣供應鏈中相當數量(每年約 1300 萬噸)的甲烷外洩,且由於甲烷所造成的溫室效應遠大於二氧化碳,導致天然氣實際的減碳效益明顯不如預期。

天然氣:後化石能源時代的減碳要角

台中第二火力發電廠因為燃燒煤炭成為世界碳排放量第二名的高汙染源。 圖/Chongkian [CC BY-SA 3.0] via wikipedia
 

對化石能源的依賴,是處理氣候變遷的最大阻礙。而在各種減碳的路徑之中,「燃料轉換」是一種在短期即能見效的方式。所謂的燃料轉換,指的是將高排碳的化石燃料,轉換為低排碳的化石燃料,或是非化石燃料的生質能源。例如,在獲得相同的燃燒熱量之下,將燃燒煤礦改為燃燒天然氣,即可以減少二分之一的排碳量[1]。

煤礦與天然氣排碳量不同的原因,源於其主成分的差異。煤礦的主成分為碳(C),而天然氣的主成分則為甲烷CH4,甲烷的燃燒反應如下:

CH4 + 2O2 → CO2 + 2H2O

在這之中有部分燃燒熱量,是來自於氫原子因氧化反應而產生水分子。又因環境中水分子循環時間遠小於碳分子,且大氣中水的含量容易達到動態平衡,不會像二氧化碳會因人類工業活動而不斷增加。因此,以燃燒天然氣取代燃燒煤礦或石油,便被認為是在不改變人類社會與生活型態,也無須新型科技的研發突破,就能有效減緩大氣中二氧化碳增加速率的好方法。

甲烷外洩抵銷了天然氣的減碳效益

然而,天然氣從開採到使用過程中甲烷的外洩,卻可能會加劇溫室效應。甲烷的全球暖化潛勢(Globoal warming potenrial, GWP),以二十年為評估時間時,為二氧化碳的 72 倍;以一百年為評估時間時,則為二氧化碳的 25 倍[2]。導致低比例的甲烷外洩,也能大幅減少因燃料轉換所帶來的減碳效益。

研究估計,美國的石油與天然氣產業,每年約有1300萬噸的甲烷外洩。這不僅浪費了有限的天然資源(估值約為每年20億美元),也抵銷了一直以來使用天然氣所創造的大部分的減碳效益。

減少甲烷外洩:延緩氣候變遷最迅速實惠的方式

雖然研究結果證實過去數年來美國對天然氣的使用,因甲烷外洩而無助於減緩溫室效應。但研究者仍主張,若能減少石油與天然氣供應鏈上的甲烷外洩,燃燒天然氣仍能比燃燒煤炭對氣候變遷有更小的影響。

若能減少石油與天然氣供應鏈上的甲烷外洩,燃燒天然氣仍能比燃燒煤炭對氣候變遷有更小的影響。圖 / U.S. Air Force

研究建議對於供應鏈上的業者或管理者,可透過光學氣體成像技術進行氣體洩漏調查;在各設施或地面工作車布署被動氣體感測器;利用塔式網路(tower networks)、飛機與衛星建置遙測系統。藉由持續性的反覆監測、取樣,釐清異常外洩的原因,並重新設計或改善與天然氣相關的系統或零組件,以達到有效抑制甲烷外洩。該研究的部分成員也主張, 減少油氣供應鏈中的甲烷外洩,是延緩氣候變遷最迅速也最實惠的方式。

那麼正在擴大天然氣使用的台灣呢?

當然,本則研究是針對美國的情境,相較起台灣,美國有更為蓬勃的化石能源產業以及頁岩氣的開發工作。其供應鏈的龐大繁複,也遠比台灣僅有天然氣的接收、降壓、儲存、與運送來得複雜許多。因此,姑且可假設台灣天然氣的外洩狀況,應低於美國。但就碳足跡與氣候變遷所影響的全球尺度來看,身為天然氣進口國的我們來說,也無法迴避甲烷外洩的環境責任。

天然氣是台灣民眾常接觸的燃料之一。 圖/Magnascan @Pixabay

此外,考量到既有發電規劃中,對天然氣運用量的增加,將使天然氣發電佔比從目前的3成,於 2025 年時提升至 5 成。又從 2014 年高雄氣爆事件,也顯示可能存在因不當施工及欠缺管理與監測機制,而有風險的老舊管線。對於本研究所建議的監測方法,我國又是否已有相應作為,而能優於美國現狀?

面對氣候變遷的嚴峻挑戰,若想實踐「以氣代煤」的減碳策略,仍奠基於我國的天然氣供應鏈上,是否已有能有效抑制甲烷外洩的工程基礎。

注解:

[1]:環保署環保新聞專區〈能源轉型 減污減碳

[2]:Piers Forster, Venkatachalam Ramaswamy, et al. Changes in Atmospheric Constituents and in Radiative Forcing.

參考資料:

廖英凱
30 篇文章 ・ 248 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。 https://www.ykliao.tw/

0

0
0

文字

分享

0
0
0
能源孤島的電力未來 專訪能源局長林全能
劉珈均
・2015/05/25 ・1685字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

國小高年級科普文,素養閱讀就從今天就開始!!

迪士尼卡通《怪獸電力公司》講述一群怪物世界的電力公司員工,每天努力到人類世界嚇小孩以提取電力(可曾想過要多少小孩才能維持一座城市用電量?),在現實世界,能源局雖不負責直接發電,但與能源政策走向息息相關。原任技術處處長的林全能今年二月接任經濟部能源局局長,林全能接受泛科學專訪,談論如何看待能源政策與爭議,以及近期推動的電價市場化及「電業法修正草案」。

P5087663
能源局長林全能。圖/陳亭瑋攝。

許多政府單位皆設有能源相關業務,林全能說,就能源供應端的科技研發,能源局的定位是投入前瞻型的新能源研究,幫助台灣掌握自主能源,目前能源局投入前瞻型能源國家計畫是與工研院、海洋大學合作,在東北角海岸研究波浪發電,開發海洋能;從需求端則發想如何節能,提升發電燃燒效率,例如敦促台電公司林口的燃煤機組升級為超超臨界,排碳減少了14%。

台灣於2002年制定的「環境基本法」將非核家園納為政策方向;今年4月起立法院也開始審查「非核家園推動法草案」。林全能說,非核家園是大家共同願景,分歧點在於要如何達到,有些人希望設定時限達成,但政府主管機關必須從能源自主與能源安全、國際減碳壓力、發電成本三個方向全盤考量能源政策。

推動電價機制合理化是林全能首要任務,他推動成立獨立的電價審議會,依立法院核定的電價公式,在每年4月1日和10月1日審議、核定調整電價,希望讓電價反映市場價格波動。此機制今年4月首次啟用,包括民生、工業、商業用電皆降價,平均降幅7.34%。林全能認為政府應做到資訊透明,「電價費率審議資訊揭露專區」也在四月初調整電費時同步上架,網站有電價公式、台電公司各項成本、價格與經營資訊等內容,「如果有個平台,有大家可以信賴的數據,就能溝通、進而產生互信互賴。」

自日本311大地震過後,台灣核能留存成為最激烈的能源爭議,就林全能的感受,各方彼此互不信任,對自己的意見過於堅持,只有「發聲」而沒有「交流」,沒有接收其他訊息。

「就台灣海島環境限制,solution(解決方案)並不多。」林全能表示,除卻核能,可當基載電力(意即可24小時穩定供電的電源)的就只有燃煤與燃氣,前者碳排量較大;燃氣則是成本較高、接收站不足。現在台灣僅有兩座接收站,分別位於高雄永安與台中港,中油公司規劃在台中港新建三個儲槽,並在桃園觀塘工業區建設第三座接收站,目前已通過環評,「完成、可以運作也要6至8年之後。」

4500505090_603df40fa1
LNG(液化天然氣)運輸船。photo credit: ARCTIC DISCOVERER via photopin (license)

他也提醒不能過於仰賴單一能源 ,2002年5五月台電用氣量增加,但天然氣存量不足、調度不及而限電,時任台電董事長的林文淵因此下台;台中接收站於2009正式營運,在這之前只有高雄永安接收站運作,天然氣接收站約維持在三至五天的儲存量,但曾有颱風將運輸船阻隔在外海三天,無法進港卸氣,相關人員為了調度供電忙得人仰馬翻。

「政府很積極的推動再生能源,但再生能源目前真的無法24小時發電,無法當基載電力。」有些公民團體倡議,組合不同種類的綠能發電,便能覆蓋所有時段,成為基載電力,林全能回應:「這必須要有銜接的儲能設備。」而目前大容量儲能設備成本高、技術不夠成熟,且大量儲能所需的空間相當大。

有人推動將汰役鋰電池(被汰換下的鋰電池)轉作儲能之用,「但汰役電池在台灣不夠多,因為電動車還不盛行。」近日電動車大廠特斯拉(Tesla)推出家用鋰電池儲能系統「Powerwall」,儲存太陽能於發電高峰時的電力,可輔助調配家庭尖峰與離峰的用電,可望讓家戶脫離對傳統電網的依賴。林全能說,家居用量不大,或許可行,但作為電力供應的話就有上述限制。

局預定6月中將「電業法修正草案」再送立法院,能源局構想將發電廠與電力輸配系統「廠網分離」,「電力自由化指的是發電與售電部分。」讓民營電廠參與發電競爭,管控電網的公家單位類似代輸,並設有獨立的電力監督機構,同時達到自由化與供電穩定。

採訪尾聲,林全能強調,台灣要對自身的科學與科技能力有自信,也期盼藉由推動電價資訊公開,建立社會溝通與互信互賴。

劉珈均
35 篇文章 ・ 0 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。