0

0
0

文字

分享

0
0
0

嘗試找出綠光雷射筆鑑定冒牌橄欖油背後的科學

葉綠舒
・2014/04/15 ・1190字 ・閱讀時間約 2 分鐘 ・SR值 478 ・五年級

最近有則新聞,華盛頓雙語小學的學生發現,只要使用綠光雷射筆就可以鑑定橄欖油是否摻雜假油(1)。

新聞中提到,用綠光雷射筆照射天然橄欖油會發出紅光,而照射摻混的油品會發出黃光。這中間的原理是什麼呢?

筆者首先就想到天然的葉綠素在照光以後,所吸收的光能如果沒有傳遞出去(也就是啟動光反應),過一段時間之後,這個光能就會釋放出去。

但是釋放出去的光能,並不就是原先吸收的光能,能量的轉換從來都不是百分之百,一部份的能量會以光能的形式放出,餘下的能量則以熱能的形式散失掉。因此,研究者很早就知道,葉綠素在照光後一段時間,會放出波長為735nm與700nm的紅色螢光(2, 如下圖):

-----廣告,請繼續往下閱讀-----
Fluorescence_of_chlorophyll_under_UV_light
圖片來源:維基百科

天然橄欖油多少會有一點葉綠素在裡面,所以,天然的橄欖油有一點點淺淺的綠;因此,假設該實驗看到的紅色螢光是來自於葉綠素,是很合理的。

筆者也去查了一下,目前市面上販售的綠光雷射筆的波長為532nm,的確是落在綠光的範圍。

但是,研究光合色素的人也都知道,葉綠素之所以是綠色的,正因為它不吸綠光;所以,如何能使用綠光雷射筆來讓葉綠素發紅色螢光呢?

讓我們先來看一下葉綠素a與葉綠素b的吸收光譜。

-----廣告,請繼續往下閱讀-----
600px-Chlorophyll_ab_spectra-en.svg
圖片來源:維基百科

可以看到,葉綠素a與葉綠素b在500-550nm的範圍內只吸收很少的光,尤其是葉綠素a(圖中的藍線),根本等於不吸綠光。不過,葉綠素b(圖中的紅線)還是有吸少量的綠光,只是相比於它們對藍光(500nm以下)、紅光(600nm以上)看來,這兩種色素吸綠光真的很少很少。

不過,因為雷射是屬於單一波長,而且能量較高,可能是因為這樣,所以用綠光雷射筆可以看到它發紅光吧?!筆者倒是很好奇它發出的紅光的強度,畢竟在新聞上看不出來。

至於摻混的油發黃光到底是怎麼回事呢?筆者找了很久,沒有找到銅葉綠素的吸收光譜,也沒有找到它在吸光之後是否會發螢光,以及發出的螢光的波長;但是從網路上的資料可知,可以使用403-406nm波長的光(這個範圍是藍光~紫光)來進行定量。

所以發出的黃光,到底是不是來自於銅葉綠素呢?當然,因為黃光的能量還是比綠光要低,所以還是不能排除這個可能;而市面上最常見的紅光雷射筆,在這個試驗上是完全不能用的,因為紅光雷射筆的紅光會與葉綠素本身發出的紅色螢光混淆。

-----廣告,請繼續往下閱讀-----

其實筆者真正想要試試看的是,購買葉綠素b與銅葉綠素,將它們溶在食用油裡面,然後放在阿簡老師的黑色箱子裡,用綠光雷射筆照一下,應該就知道到底發黃光的是什麼囉!

 

參考文獻:

  1. 2014.4.12. 綠鐳光筆 小學生辨橄欖油真假。自由時報。
  2. 2014.3.14. Wikipedia. Chlorophyll fluorescence.
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
科學不只是數據,還能看到想要的東西──專訪高甫仁教授
顯微觀點_96
・2024/08/29 ・2167字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

2018 年,陽明大學生醫光電研究所教授高甫仁在台北的「未來科技展」上,展示出一種直徑遠小於市面產品的內視鏡,只有不到 0.5 公厘。「內視鏡就像是帶著車頭燈的攝影機。」高甫仁說。這種小型攝影機像是條細長的電線,能夠透過微創手術深入人體內部,檢查呼吸道、腸胃系統或各種器官,藉由鏡頭前端的光源看見病灶影像。

圖/顯微觀點

「可是你會發現,光源沒有辦法做得更小。」內視鏡受限於發光二極體(LED)的體積,似乎難以再改良。然而,高甫仁利用比頭髮更細的光纖導入雷射,取代 LED 作為光源,大大減少內視鏡體積。如此一來,就能進一步縮小手術傷口,加快恢復時間。而且只需要一至兩根光纖,亮度就會超過好幾顆 LED。

雷射是一種能量集中的光束,再加上亮度高的特性,常被應用在光學儀器上。事實上,這已經不是第一次高甫仁利用雷射作為光學儀器的光源。鑽研雷射超過 20 年的他,深知這項技術所具備的潛力。

-----廣告,請繼續往下閱讀-----


超快雷射結合顯微技術

其中一項重要的應用領域便是超快雷射,這種雷射的持續時間極短,甚至可達到飛秒(10-15秒)的程度,能夠形成瞬間能量極強的光,「超快雷射能夠達到的能量密度,可能是一般雷射的百萬倍以上。」高甫仁解釋。

1990 年代,超快雷射技術崛起,開始應用在各種科學場域上。當時高甫仁正在美國康乃爾大學攻讀博士班,主要研究的領域是固態物理,例如探討原子或分子間的交互作用,讓他也有機會學習使用與架設超快雷射。

然而固態物理的實驗十分昂貴,常常需要在超低溫、高磁場、超高真空等環境下進行。因此當高甫仁從美國回到台灣從事研究工作時,便面臨到經費不足的困境,「太空實驗、高能物理都不是一個人或一個團隊能夠負擔的,因此我思考,是不是能透過個人創意,在比較簡單的實驗室就能做出特別的東西。」

超快雷射除了應用在固態物理,也逐漸在顯微領域上嶄露頭角。因此高甫仁認為,若超快雷射能夠與光學顯微鏡結合,就有機會做出一番成果。於是在陽明大學的近代光學實驗室裡,高甫仁成功自製出應用超快雷射作為光源的雙光子顯微鏡,「很多以前只是在教科書上看到的非線性光學效應,跟顯微鏡結合後,居然真的實現了;本來看不到的東西,現在直接就看得到。」

-----廣告,請繼續往下閱讀-----

一般使用傳統的螢光顯微鏡時,會採用較高能量、短波長的光子照射樣品,使螢光分子發出低能量、長波長的光子。若使用超快雷射作為光源,就能夠將能量低的光子轉換為高能量的光子,「就像用兩個五塊錢換一個十塊錢,可是兩個五塊錢要在同一時間打到同一個點,普通光源做不到這件事。」雙光子顯微鏡讓研究者可以觀測到深層組織,並降低雜訊干擾。

能量高、亮度高的超快雷射,還可以用來捕捉快速發生的自然現象,就像我們使用單眼相機拍照時,可以調控快門速度來清楚拍攝物體,「機械快門通常可達千分之一秒,電子快門可達萬分之一秒,但如果想要更快的快門,就得從光源下手,例如使用特殊的閃光燈,在百萬分之一秒內凍結影像。」若使用超快雷射,就能抓住兆分之一秒的瞬間。

「我一直對顯微鏡很著迷,做科學不是只有數據,而是能看到很漂亮的圖像、看到想要的東西。」高甫仁真切地說,「如果有一幅影像全世界沒有人拍過,而我是全世界第一個做出來的,就會感到非常振奮。」他說,二十多年前,他第一次看到氮化鎵(gallium nitride)所形成的光電流影像,當下的感覺無可比擬。

科學與藝術

「顯微鏡需要最尖端的科技,呈現的影像又具有藝術性,很少有領域同時具有這樣的特性。」高甫仁認為,顯微鏡所呈現的影像,就像哈伯天文望遠鏡所觀測的宇宙般令人驚豔,即使兩種科技的尺度天差地別,但都是透過光學成像技術映照出前所未見的世界。

-----廣告,請繼續往下閱讀-----

從生物樣品到半導體元件等各種樣本,高甫仁都曾用顯微鏡觀察過,對於光學成像已有自己的一套心得,「所有的光學成像離不開三個原則:挑選與使用光源、如何用光學元件成像,以及如何偵測影像。」

高甫仁也提及,隨著人工智慧(AI)的普及,顯微鏡也已開始採用 AI。現階段顯微攝影已具備快速拍攝大量影像的技術,然而如何分析與處理影像,成為當前各研究人員急欲解決的問題,「AI的運算能力加上深度學習技術,可以分析上千張影像之間的關聯性。」高甫仁認為透過 AI,將能夠補足傳統光學顯微術的不足之處。

此外,高甫仁表示,未來還可能會出現量子光學,掀起另一波的顯微技術革命。「利用量子狀態的相關性,可以讓取像時間大幅縮短。」就像量子電腦可以利用量子位元提升運算速度,解決當前棘手的問題,「利用量子光學,只需要更少的光子,就達到同樣的精準度。」

高甫仁認為,「顯微鏡的目的,就是透過影像連結尖端科學。」影像裡所述說的故事,以及所負載的科學意義,將會持續推動科學家鑽研更新的技術,發現更多前所未見的世界。

-----廣告,請繼續往下閱讀-----

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
33 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
全焦段散光矯正人工水晶體一次解決白內障、近視、老花和散光問題?一次手術重現良好視力?
careonline_96
・2024/06/21 ・2571字 ・閱讀時間約 5 分鐘

「那是一位 50 多歲的女士,原本近視將近一千度,而在出現白內障後,近視的狀況又急速惡化,於是決定接受白內障手術。」花蓮慈濟醫院眼科部視網膜科主任何明山醫師表示,「經過詳細討論後,患者選擇使用全焦段散光矯正人工水晶體,希望解決白內障並同時矯正近視、散光、老花眼。」

手術完成後,患者順利恢復。何明山醫師說,全焦段散光矯正人工水晶體能夠提供遠、中、近連續視力同時矯正散光,讓患者不用再戴近視眼鏡,也不需要戴老花眼鏡,生活與工作都方便許多。

白內障是因為眼睛裡面的水晶體老化,而影響光線進入眼球。何明山醫師指出,水晶體就像照相機的鏡頭,當鏡頭變混濁,進到眼睛的光線便會減少,所以在比較昏暗的狀況下,會覺得視力模糊、顏色改變。由於光線進入白內障後會散射,讓電燈、車燈散開,所以容易出現眩光。

白內障的形成主要與年紀有關,在過去白內障大多出現在 50 歲以上的患者。不過還有許多原因可能導致白內障提早發生,危險因子包括高度近視、糖尿病、眼睛外傷、紫外線曝曬、長期使用類固醇等。

-----廣告,請繼續往下閱讀-----

何明山醫師說,「隨著 3C 產品的普及,長時間使用 3C 產品的人越來越多,臨床上也發現白內障有年輕化的趨勢,有些患者在 40 歲就開始有白內障。大家一定要多關心眼睛的健康!」

當白內障已經對日常生活造成影響時,便會建議接受治療。何明山醫師指出,放任白內障惡化,除了影響視力之外,還會影響眼睛的健康,因為過熟的白內障可能造成青光眼,嚴重會導致失明,而且當白內障過熟時,也會增加手術的困難度、增加出現併發症的風險。

利用人工水晶體解決近視、老花與散光

在白內障早期,可能會使用眼藥水,幫助延緩白內障惡化。何明山醫師說,待白內障成熟時,便需要利用手術移除混濁的水晶體,然後放入人工水晶體。

人工水晶體的選擇,主要由患者的用眼需求來決定。何明山醫師說,如果有近視、老花眼、散光等狀況,現在也可以一併用人工水晶體來矯正。

-----廣告,請繼續往下閱讀-----

傳統的單焦點人工水晶體可以提供遠距離視力,而中、近距離便需要配戴眼鏡。何明山醫師說,隨著光學技術的進步,人工水晶體持續進化,陸續開發出多焦點人工水晶體、全焦段人工水晶體等。

多焦點人工水晶體能夠看清楚特定焦點處的物體,而全焦段人工水晶體能夠延長視覺景深,提供遠、中、近距離的連續視力,最近視距約 33 公分。何明山醫師說,中距離視力大約 60 公分,對患者非常重要,日常生活中經常使用中距離視力,例如開車看導航、煮飯、打電腦、打牌休閒娛樂等。擁有中、近距離的連續視力,能夠顯著提升便利性。

全焦段人工水晶體也能保有較佳的顏色對比度,減少夜間眩光。何明山醫師說,部分具老花矯正功能的人工水晶體有較明顯的夜間光學干擾,如果常有夜間駕車的需求,可考慮使用全焦段人工水晶體,提升行車安全。何醫師進一步表示,門診有幾位患者植入全焦段人工水晶體後,開長途車回診也都不是問題。

同時矯正散光,提升視覺品質

在台灣散光的盛行率很高,可能有四成至五成的患者有散光。何明山醫師說,散光超過 100 度便會影響視力清晰度,所以在進行白內障手術時,會建議一併矯正散光。

-----廣告,請繼續往下閱讀-----

因為散光具有方向性,所以放入散光矯正人工水晶體時,必須固定在特定角度,才能發揮矯正效果。何明山醫師說,傳統散光人工水晶體需要經過一段時間後才能夠穩定,若在術後出現位移旋轉,便會影響散光矯正的效果。新一代散光矯正技術能夠提升術後穩定度,較不會產生位移,讓術後視力更清晰。

何明山醫師提醒,視力對生活與工作皆很重要,接受白內障手術前,請與醫師詳細討論,選擇合適的人工水晶體!

筆記重點整理

  • 白內障的形成主要與年紀有關,不過還有許多原因可能導致白內障提早發生,危險因子包括高度近視、糖尿病、眼睛外傷、紫外線曝曬、長期使用類固醇等。
  • 當白內障已經對日常生活造成影響時,便會建議接受治療。放任白內障惡化,除了影響視力之外,還會影響眼睛的健康,因為過熟的白內障可能造成青光眼,嚴重會導致失明,而且當白內障過熟時,也會增加手術的困難度、增加出現併發症的風險。
  • 如果有近視、老花眼、散光等狀況,現在可以一併用人工水晶體來矯正。多焦點人工水晶體能夠看清楚特定焦點處的物體,而全焦段人工水晶體能夠延長視覺景深,提供遠、中、近距離的連續視力,顯著提升便利性。
  • 全焦段人工水晶體能保有較佳的顏色對比度,減少夜間眩光,有助提升安全性。
  • 散光超過 100 度便會影響視力清晰度,在進行白內障手術時,建議一併矯正散光。因為散光具有方向性,所以放入散光矯正人工水晶體時,必須固定在特定角度,才能發揮矯正效果。新一代散光矯正技術能夠提升術後穩定度,較不會產生位移,讓術後視力更清晰。

-----廣告,請繼續往下閱讀-----