0

0
0

文字

分享

0
0
0

來自星星的你,都教授你到底來自哪顆星?

果殼網_96
・2014/02/18 ・3883字 ・閱讀時間約 8 分鐘 ・SR值 561 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

《來自星星的你》中風流倜儻英俊瀟灑無敵帥氣的男主角到底來自哪個星星?看天文學家怎麼來解讀熱門韓劇。

作者:靠天吃飯的徒弟

全智賢牽手盜賊聯盟中合作過的金秀賢演出的電視劇《來自星星的你》最近火的不能再火。

教授身份大解密

外星人都敏俊(金秀賢飾)教授在地球上生活了四百年,服過24次兵役,見證了韓國房地產業的發展,從事過醫療、金融、法律等各種高端洋氣的行業,還做過捕快。哈佛大學畢業,有學位收集癮和古董收集癖,熱愛打麻將和釣魚,非常有錢。當然在看過教授大人的臉和擁有八塊腹肌的美好肉體之後(都教授第一集就洗過澡了),那些就都不重要了。

_34MuPDtz37QnozdESxkQwJyfqxKsrOO7g4zM2esBQvMAQAA_AEAAEpQ

雖然有專業粉絲質疑過,李氏朝鮮時代實施從母法,教授想混跡民間頗為不易。但是想想,教授作為一個有超能力的外星人,弄張假身份證是多麼容易簡單的事。於是參與討論的妹子們都釋然了,改歡欣地討論教授大人歷經二戰、韓戰硝煙是怎麼把那些古董字畫一樣樣的保存下來的。並且感嘆都教授選擇人員複雜流通迅速的漢城生活,真是大隱隱於市啊。

昨天晚上教授大雪紛飛中暫停時間的一吻,令廣大女觀眾虐心致死,網路上不少女生振臂高呼非君不嫁。嫁人好歹要知根知底,那麼英俊帥氣多金又有超能力的都教授到底是哪裡來的呢?

在第一集裡,教授這樣說:

B8cnqY8TYpRD136VulMI4alTl-ez3ruEMxpIEqz8JwcuAgAAOwEAAEpQ

我們首先忽略字幕組彗星的誤會,認為都教授的家鄉如他自己所說,是一顆氣候、環境與地球差不多的行星。因為行星本身不發光只是反射恆星的光,所以普通光學觀測對於太陽系外行星可以說毫!無!辦!法!也就是說,所有我們能看到的星圖上閃閃發光小星星的都是恆星。所以,都敏俊xi,您標出來的那顆也是恆星。當然,很有可能教授標出來的是他所在行星繞轉的恆星。那麼真的有編號 kmt184.05 的恆星嗎?

星星的編號,自有體系

德國天文學家約翰·拜耳(Johann Bayer,1572-1625)於1603年在他的星圖《測天圖》(Uranometria)中,首先有系統的為許多亮星命名, 以一個希臘字母像是α、 β、γ、等等做前導,後面伴隨著拉丁文所有格的星座名稱。拜耳命名恆星1564顆。

例如,中國傳統星宿命名法中的畢宿五命名為金牛座α,它的意思就是在金牛座排序為第一顆的恆星。單一個星座可能包含50顆甚至更多的恆星,但是希臘字母只有24個,當這些字母用完之後,開始使用小寫的拉丁字母:因此便會有船底座s和半人馬座d等名稱。在星星數量極多的星座內,最終使用到大寫的拉丁字母,像是天蠍座G和船帆座N。拜耳使用的最後一個大寫字母是Q。

基本上每個星座中排名較前的恆星都是亮星,比如近年來拉動暑假消費的牛郎星(天鷹座α)和織女星(天琴座α)。原因無他,觀測手段有限,亮的更容易被觀測到,但並不意味著拜耳是以亮度排列恆星名稱。

隨著人類觀測水準提高,越來越多的恆星被發現,拜耳命名法名稱數量有限的問題催生出了新的恆星命名法──弗蘭斯蒂德(John Flamsteed,1646-1719,英國天文學家)命名法。該方法與拜耳類似,除了以數字取代希臘字母外,每顆恆星還是以數字和拉丁文所有格的星座名稱結合在一起。但實際上,弗氏編號只涵蓋到在大不列顛可以看見的星星,因此偏向南天的星座都沒有弗氏編號。於沒有佛蘭斯蒂德命名法的南天肉眼可見恆星,古德(Benjamin Apthorp Gould,1824-1896,美國天文學家)命名法由於相對星表目錄編號的名稱更為直觀而仍然在使用,是的,這是第三種恆星命名法。比如,南天的球狀星團杜鵑座47的編號來自約翰·波得(Johann Elert Bode,1747-1826,德國天文學家);鄰近的波江座82不是弗蘭斯蒂德命名法而是古德命名法的編號。

星雲成了解謎的鑰匙

實際上,kmt184.05 不是國際天文學界認可的恆星編號。所以,我們無法判斷都教授到底從哪裡來的。不過,這並不代表我們對教授家鄉的探索就此終止,回顧教授給出的那張星圖,我們可以驚喜的看到日本人民的老朋友──光之星雲M78,根據主創設定,那是奧特曼出生的地方。這就意味著,不是,當然不是去問奧特曼就行……這就意味著,我們可以在專業天文軟件上以M78為參考位置找到教授星,並標示出它的位置。實際上,大部分天文光學觀測就是從試拍並根據證認星圖尋找目標星開始的。

借用拜耳《測天圖》來教大家在夜空中找到教授星。教授星位於全天最好找的星座——獵戶座,就在腰帶左上。
借用拜耳《測天圖》來教大家在夜空中找到教授星。教授星位於全天最好找的星座——獵戶座,就在腰帶左上。

下面是一張 60’×60′ 大小的星空圖,這裡的「′」是角分,代表以地心為原點對應空間位置的張角。圖中標出的就是真實星空認證圖中的教授星。赤經05:45:28.56,赤緯-00:14:47.9。

QJfGd6rEj9z_wOlWOQzxXlmXW-iPfWNU9JkSU7jDp7LbAQAADgIAAEpQ

繼續放大這張圖,我們驚喜的發現,教授星並非一顆恆星而是一對雙星。

G0pUomw4E_v9xAvti56-9Jw2AcJSaGlmiYNgqoaEBiwuAgAAkQEAAEpQ

這一對恆星最早出現在HD星表中,編號為HD290865。亨利·德雷伯星表(The Henry Draper Catalogue),縮寫為HD,是哈佛大學天文台編纂的世界上第一個收錄恆星光譜的大型星表,涵蓋了全天最暗達到9等的恆星(大部分分佈在北天)。編號沒有按照之前命名法的先例,而直接採用HD+數字為恆星命名。HD星表的第一部分發佈於1918年-1924年,發布了編號為1-225300號的恆星,然後在1937-1949年發布了第225301-359083號恆星,對照教授星的編號,屬於補充發布的第二部分。而後,很有可能隨著觀測水平提高,這一對雙星被分辨開,於是在2010年發布的UCAC3星表中這對雙星被標註為3UC180-026979和3UC180-026980。UCAC3的全稱是《美國海軍天文台CCD天體照相星表第三版》(The Third US Naval Observatory CCD Astrograph Catalog),此星表收錄了全天100,766,420顆恆星的數據。

直到最近,智利歐南天文台的科學家們才宣稱他們找到一顆圍繞兩顆恆星旋轉的巨大天體。如果教授星真的是一個雙星系統,那就意味著教授的行星上將會有兩個太陽升起。

雙星系統從構成上來說分為兩種,光學雙星和物理雙星。光學雙星只是兩顆星在地球上觀測時看起來很接近,但是彼此之間沒有物理關係。實際上這樣的光學雙星可能互相距離非常遠,超過幾十萬光年。另一種就是物理雙星,這是真正自成物理系統的雙星系統。物理雙星因為其特質又分為目視雙星,觀測中能清晰分辨兩顆星相的雙星系統;分光雙星,距離很近,軌道傾角較大,所以只能依靠光譜譜線的周期性多普勒位移來判定的雙星系統;和食變雙星,這種雙星系統兩顆星在運動時互相遮擋,只能通過測光的周期性變化判定。

天文學家哈雷(沒錯就是命名哈雷彗星的那口牛人),早在1718年就發現了天狼星的自行。從此科學界開始意識到,我們所認為的“恆星”其實並不是完全不動。恆星的位置會相對某一個固定的春分點的赤經赤緯隨時間平均變化,這就是恆星自行。1834年科學家發現天狼星的自行不是直線而呈波浪起伏。到了1862年,在天狼星軌道附近找到了天狼星8.64等的伴星,遠遠暗於天狼星本身-1.47等。這兩顆星的質量分別為2.28個太陽質量和0.98個太陽質量,體積卻相差很遠。是的,天狼星的伴星,天狼星雙星系統的另一顆恆星,最終被證實為人類發現的第一顆白矮星。

望遠鏡裡的天狼星雙星系統,左側那個小圓點就是天狼星的伴星,一顆體積相當於地球,質量接近太陽的白矮星。
望遠鏡裡的天狼星雙星系統,左側那個小圓點就是天狼星的伴星,一顆體積相當於地球,質量接近太陽的白矮星。

那麼,教授星真的是一個令人興奮的目視雙星系統嗎?教授的母星上真的有兩個太陽升起落下嗎?我們查閱了《736對目視雙星曆表和視軌道總表》,遺憾的是,教授星並未收錄其中,教授圈出來的只是一對光學雙星,它倆只是看起來近而已。

到此,我覺得都教授本人,深感於他對部分地球女性的巨大影響力,基於自我保護的原則給出了錯誤的編號和含糊的標記,以避免發瘋的觀眾朋友對該星球上的無辜群眾造成不必要的生活困擾。人類現在對系外類地行星的探索才剛起步不久,測量手段有限。一些系外行星是在凌恆星(就是從地球和恆星間飛過)時,擋住恆星,引起恆星光譜變化被發現的。以這種方式被發現的系外行星多為氣態行星,體積足夠大。更多的,天體測量學家們嘗試通過在太​​空中架設高精度望遠鏡,測量恆星因行星繞轉的擾動而引起的自行變化來發現類地行星。

kWgeF-SHjcjGJQcIUpicBrN22MfsGU6Wgc22eRlyFUeAAgAAewIAAEpQ

總之,以現階段人類的科技水準,想要騷擾到都敏俊教授的同胞,幾乎是絕無任何可能的。但是,該行星所在星系大概隨著人類觀測水準進步可能大大增加地球占星事業的複雜程度。

離我們最近的類地行星遠在12光年以外,其氣候條件與地球也相去甚遠,外星人都教授的家更是遠的雲深不知處。於是都教授,與其耗費時間在漫長的星際旅行中,不如,留下來陪著這些花痴的女觀眾,一起慢慢的變老吧。

最後,有觀眾指出,教授本人其實是北韓間諜……這個,好吧,這個解釋其實也相當合理!!

 

參考文獻:

  1. The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars[J]. Nesterov VV; Kuzmin AV; Ashimbaeva NT; Volchkov AA; Roeser S.; Bastian U.
  2. The Orbit of Visual Binary ADS4396=A2657[J]. RRde Freitas Mourao.; OCTravares.; MRNunes.
  3. 天文學導論[R]. 黃克瓊.;胡中為.;陳再載璋.;
  4. Planets,Stars,And Galaxies[R]. SJInlis
  5. 736對目視雙星曆表和視軌道總表[R]. 閻林山.; 儲宗元.; 潘大钑.
  6. Transit Probabilities for Stars with Stellar Inclination constrains[J]. TGBeatty.; Sara.Seager.
  7. 2013年中國天文學大會天體力學與天體測量分會場STEP報告
  8. 拜耳命名法
  9. 佛蘭斯蒂德命名法
  10. 古德命名法
  11. http://ultra.wikia.com/wiki/Ultraman_Wiki

轉載自果殼網

文章難易度
果殼網_96
108 篇文章 ・ 5 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

9
3

文字

分享

0
9
3
發現最靠近地球的黑洞:Gaia BH1
全國大學天文社聯盟
・2022/11/30 ・2897字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 文/林彥興|清大天文所碩士生、EASY 天文地科團隊主編、全國大學天文社聯盟監事

本月初 [1],「最靠近地球的黑洞」這個紀錄被刷新了!以天文學家 Kareem El-Badry 為首的團隊,利用蓋亞(Gaia)衛星極度精準的天體位置資料,加上多座望遠鏡聯合進行的徑向速度量測,成功確認了約 1550 光年外位於蛇夫座的一顆恆星,正與黑洞互相繞行,打破離地球最近的黑洞紀錄。

狩獵隱身巨獸的方法

人類搜尋黑洞已經有數十年的歷史。對於正在「進食」,也就是正在吸積物質的黑洞,由於其周遭的吸積盤和噴流等結構會在無線電、X 射線等多個波段發出強烈的電磁輻射,因此相對容易看到;但沒有在進食的黑洞,就要難找許多。

畢竟黑洞之所以被叫做黑洞,就是因為它本身幾乎不會發光。想要尋找這些「沉默」黑洞的方法,通常只能靠著黑洞的重力對其週遭的影響,間接推測黑洞的存在。

其中最常見的方法,就是尋找「繞著看不見的物體旋轉的恆星」。一般來說,恆星在天空中移動的軌跡應只受恆星的視差和自行影響,但如果恆星在與另一個大質量的天體互相繞行,比如我們的目標:沉默的黑洞,那恆星的軌跡就會受到黑洞影響。

因此觀測恆星的移動軌跡,是尋找沉默黑洞的重要方法之一。這個方法最著名的例子,就是 2020 年諾貝爾物理獎得主 Reinhard Genzel 與 Andrea Ghez 藉由長時間觀測銀河系中心的恆星運動(位置與徑向速度),從而確認了銀河系中心超大質量黑洞的存在。

UCLA 的銀河中心觀測團隊即是以觀測恆星的運動確認銀河系中央超大質量黑洞的存在。圖/UCLA Galactic Center Group – W.M. Keck Observatory Laser Team

但由於方法間接,用這類方式尋找黑洞時往往很難確定那個「看不見的物體」到底是不是黑洞。舉例來說,2020 年歐南天文台的天文學家宣布發現 HR 6819 是一個包含黑洞的三星系統,卻在更多更仔細的研究後遭到推翻。因此從恆星的運動來尋找「黑洞候選者」相對不難,但是想要消滅所有其他的可能性,「確定」黑洞的存在,就不是一件容易的事。

多方聯合|鎖定真身

那麼,這次的新研究是怎麼「確定」黑洞的存在的呢?

第一步,天文學家們先把目標鎖定在「形跡詭異」的恆星。因為當一顆恆星與黑洞互相繞行時,恆星在天上的運行軌跡會因為黑洞的引力而有週期性的擺盪。所以,如果我們看到有個恆星的軌跡歪歪扭扭,這顆恆星很可能就是受到黑洞重力影響的候選者。

而目前,蓋亞衛星(Gaia)提供的天體位置資料是當之無愧的首選。蓋亞是歐洲太空總署(ESA)於 2013 年發射的太空望遠鏡,與著名的韋伯太空望遠鏡一樣運行在日地第二拉格朗日點。

但與十項全能的韋伯不同,蓋亞是「天體測量學 Astrometry」的專家,專門以微角秒等級的超高精確度測量天體的位置。每隔幾年,蓋亞團隊就會整理並公布他們的觀測結果,稱為資料發布(Data Release)。目前最新的「第三次資料發布 DR3」之中,就包含了超過 18 億顆天體的海量資料。

歐洲太空總署(ESA)的蓋亞衛星(Gaia)是當前測量天體位置和距離無庸置疑的首選。圖/ESA/ATG medialab; background: ESO/S. Brunier

經過篩選,團隊發現一顆名為 Gaia DR3 4373465352415301632 的恆星看起來格外可疑。這是一顆視星等 13.77(大概比肉眼可見極限暗 1300 倍,但以天文學的角度來說算是相當亮)、與太陽十分相似的恆星,距離地球約 1550 光年。

畫面中央的明亮恆星即是這次的主角 Gaia BH1。圖/Panstarrs

找到可能的候選者後,團隊一方面翻閱過去觀測這顆恆星的歷史資料,另一方面也申請多座望遠鏡,進行了四個月的光譜觀測。同時使用從蓋亞衛星的位置(赤經、赤緯、視差)以及從光譜獲得的徑向速度資訊,團隊可以精確地計算出這顆恆星應當是正在繞行一個 9.6 倍太陽質量的天體運轉。

這麼大的質量,卻幾乎不發出任何光,黑洞幾乎是唯一可能的解釋。

但以現有的觀測資料,天文學家仍不能確定它到底是一顆黑洞,還是有兩顆黑洞以相當近地軌道互相繞行,然後恆星再以較大的軌道繞著兩顆黑洞運轉。但無論是一顆或兩顆,Gaia BH1 都刷新了離地球最近黑洞的紀錄,距離僅有 1550 光年,比上一個紀錄保持人(LMXB A0620-00)要近了三倍。從銀河系的尺度來看,這幾乎可說是就在自家後院。

結合蓋亞與其他多座望遠鏡的光譜觀測,天文學家可以計算出 Gaia BH1 在天空中的移動軌跡(左圖黑線)與其軌道形狀(右圖)。注意除了恆星與黑洞互繞所造成的移動外,恆星在天上的位置也受視差和自行影響,兩者在左圖中以藍色虛線表示。圖/El-Badry et al. 2022.
天文學家計算出的 Gaia BH1 徑向速度(RV)變化(黑線)與觀測結果(各顏色的點)。圖/El-Badry et al. 2022.

更多黑洞就在前方

最後讓我們來聊聊,找到「離地球最近的黑洞」有什麼意義呢?

「離地球最近的黑洞」這個紀錄本身是沒有太多意義的。雖然說從銀河系的尺度來說,1550 光年幾乎可說是自家後院,但是這顆黑洞並不會對太陽系、地球或是大家的日常生活產生任何影響。既然如此,為什麼天文學家還會努力尋找這些黑洞呢?

其中一大原因,是因為尋找這些與恆星互相繞行的黑洞,可以幫助天文學家了解恆星演化的過程。在銀河系漫長的演化歷史中,曾有數不清的恆星誕生又死亡。我們看不到這些已經死亡的恆星,但可以藉由這次研究的方法,去尋找這些大質量恆星死亡後留下的黑洞 [2],從而推測雙星過去是如何演化,留下的遺骸才會是如今看到的樣子。

除了 Gaia BH1,天文學家也在持續研究 Gaia DR3 之中其他「形跡可疑」的恆星/黑洞雙星候選系統。而隨著蓋亞衛星的持續觀測,更多這類黑洞候選者將會越來越多。研究這些系統,將幫助天文學家進一步了解雙星系統演化的奧秘。

註解

[1] 嚴格來說,論文九月中就已經出現在 arXiv 上了。

[2] 嚴格來說,恆星質量黑洞(stellar mass black hole)是大質量恆星的遺骸。超大質量黑洞(supermassive black hole)就不一定了。

延伸閱讀

  1. El-Badry, K., Rix, H. W., Quataert, E., Howard, A. W., Isaacson, H., Fuller, J., … & Wojno, J. (2022). A Sun-like star orbiting a black hole. Monthly Notices of the Royal Astronomical Society518(1), 1057-1085.
  2. [2209.06833] A Sun-like star orbiting a black hole
  3. Astronomers Discover Closest Black Hole to Earth | Center for Astrophysics
  4. The Dormant Stellar-Mass Black Hole that Actually Is | astrobites
  5. Astronomers find a sun-like star orbiting a nearby black hole
  6. 狩獵隱身巨獸:天文學家發現沉默的恆星質量黑洞? – PanSci 泛科學
  7. 「最靠近地球的黑洞」其實不是黑洞
  8. 人們抬頭所遙望的星空是恆定不變嗎? – 科學月刊Science Monthly

0

2
0

文字

分享

0
2
0
宇宙如何影響我們的文明?星空信仰下的人們——《人類大宇宙》
遠流出版_96
・2022/10/17 ・3016字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者 / 喬.馬錢特博士(Dr. Jo Marchant)
  • 譯者 / 徐立妍

宇宙最初的光芒

將近一百四十億年前,一切自虛無中霹靂而生,我們的宇宙從一個熾熱、壓縮又微小到無法想像的小點中迸發誕生,接著幾乎是在一瞬間便往外膨脹,形成太空的這個空間以超過光速的程度急速擴張,一直到所有存在的物體大約成為一顆葡萄柚的大小。

然後,宇宙持續擴張、冷卻,接著形成了最初的物質,就在那第一秒內,中子、質子、電子、光子、中微子等各種粒子組成的高密度團相互推擠,形成一股驚人而熾灼的熱,散發出有如霧般的光。宇宙生成大約三十八萬年後,這顆泡泡已經擴張到幾千萬光年以外的地方,並且冷卻到了幾千度左右,這樣的溫度足以讓原子組合在一起,宇宙第一次透出了光。

一開始只是一閃即逝的光,然後黑暗再度籠罩,還要再過幾千萬年,重力才能夠吸引住稍有密度的各種物質,粗暴地將一團團氣體碰撞在一起,形成最早的星星及星系,就這樣,天空的燈光一個個亮了起來。

大霹靂(Big Bang)。圖/envato.elements

大多數的宇宙學入門大概都會以自己的方式描述這一連串事件,但謎團仍未解開:大霹靂(Big Bang)真的是一切的開端嗎?或者我們的宇宙只是在另一個更大的多重宇宙中一顆不斷膨脹的泡泡?宇宙會永遠擴張下去嗎?或者到最後會在一次大擠壓中再次崩塌?不過,眾人都能同意宇宙的普遍性質及宇宙是怎麼回事,目前已經揭露的事實是,這是一台龐大且精細的機器,由物理粒子組成,並且其中的作用力也依循著數學方程式及法則。

仰望星辰的人類歷史

這本書要說的是不同的故事。宇宙的科學解釋是我們現代文明的巔峰,如此擲地有聲的見解足以消弭其他所有不同看法。研究宇宙的宇宙學曾一度被形容為在哲學及精神層面上的廣泛追尋,要找出人類存在的意義,要問我們是誰、我們在哪裡、我們為何在此地,如今卻是數學天文學的一個分支。那麼,那些大哉問怎麼了呢?我們對於宇宙已經沒有其他什麼需要知道的嗎?

這本書並不是要詳細描述最新的天文學進展,是要介紹長久以來,人們從星辰收集到的知識歷史,是關於人們的宇宙觀如何讓他們認識了現實的本質及生命的意義;關於我們已經捨棄的那些神祇與靈魂、神話與神獸、宮殿與天體;關於科學觀點如何成為主流,而這段路程又是如何形塑今日的我們。這是一段關於人的故事,講述了祭司、女神、探險家、革命家和君王,故事並非由大霹靂開始,甚至也不是由科學的誕生開始,而是由最早抬頭望向星星的人類開始,以及他們在天空中找到的答案。

為何要在乎過去對天上的信仰?考古學家和歷史學家通常不會如此。我們知道,科學是立基於試圖理解天堂的念頭,不過學者要更全面追溯人類歷史進展時就鮮少以此為焦點,我認為此舉對於我們要理解自己從何而來造成了巨大的盲點。事實上,人們在天空中所看到的模式一直都主宰著人們在地上生活的方式,形塑了對於時間與空間、權力與事實、生與死等概念。
我們在古老的過往中便看見這一點:執著於日食的巴比倫人;建造金字塔以引導靈魂前往星星所在之處的埃及法老;在太陽旗幟下奮戰的羅馬皇帝。對宇宙的概念也形塑了現代世界,即使我們忘記這些影響力的根源,卻也已經深植在社會當中,存在我們的國會、教堂、藝廊、時鐘與地圖裡。從基督教的誕生,乃至歐洲的探險及主宰星球,其中核心的影響力正是對太陽、月亮、星星的信仰,他們指引著不羈的立法人員創建了民主與人權原則、引導經濟學家建立資本主義所仰賴的框架,甚至指示畫家畫出了第一幅抽象畫。

捷克布拉格舊市政廳天文鐘。圖/envato.elements

今日光害籠罩著我們的星球,星星幾乎消失了,過去在黑暗的夜空中能看見上千顆星星,但今日在城市裡的我們只能看見幾十顆。天文學家擔心,就連這些很快也會遠遠不敵人造衛星的數量,在美國和歐洲的大多數人根本再也看不見銀河。看著自然遺產這樣逐漸消蝕實在是災難一場,我們與銀河系及浩瀚宇宙之間的連結也會就此消逝。沒有人為此群起大聲疾呼,大多數人只是聳聳肩,依舊盯著自己的手機,絲毫不擔心即將失去這片在歷史上其他每一種人類文化都視為必要的景象。

宇宙的本質與生命的追尋

但是,我們仍然努力想弄清楚我們在宇宙中的位置,科學在這方面的進展十分成功:今天一個五歲小孩比起幾千年前的古早文化更清楚物理宇宙的歷史、組成及本質,但是科學也將這些文化在生命中發現的意義拆解了大半,將個人經驗屏除在我們對現實的理解之外,取而代之的是時空概念抽象而數學化的網格。

地球從存在的中心被踢到了邊緣,生命被重塑成隨機意外的結果,而且也完全不管神明了,現在一切都能以物理法則來解釋。我們在宇宙秩序中完全不是什麼有意義的角色,而是如物理學家史蒂芬.霍金(Stephen Hawking)所言,我們只是「化學渣滓」,存在於一個中等大小的星球表面,繞著一個沒什麼重要性的星球運行。

幾百年來不斷有人批評反對這樣冰冷機械式地解釋人性,過程中經常全盤否決科學的見解,一直到不久之前仍屬於禁忌話題,但現在即使是受人敬重的科學家也對此表達擔憂,他們認為或許物理物質並非宇宙全貌、並非我們的全貌;或許,科學只看見了全貌的一半。我們可以解釋星體與星系,但心智呢?意識本身呢?這些論戰逐漸形成一場世紀之戰,可能會改變整個西方的世界觀。

畫下戰線之後,我想我們必須換個角度思考,提出概述,因此這是一本關於宇宙的書,不是科學指南,是從人性出發。我不長篇大論地講述,而是選擇了十二個時刻,你或許也可以稱之為墊腳石,讓我們理解歷史上的人們是如何看待天空,尤其是這十二篇故事依循著西方物質宇宙觀點的崛起,爬梳這套宇宙模型如何主導我們的生活。這些故事從人類最早透過洞穴壁畫及巨石陣來表達人性開始追溯,途中講述了基督教、民主及科學等重要傳統的誕生,最後進行到追尋外星生命以及近來飛入真正的且虛擬的太空之旅。

這趟旅程能夠解釋今日的我們是誰,或許還能指引出未來的航道。所謂當局者迷,我們很難看見其極限,因此我希望拉遠距離去檢視人類宇宙信仰的深度歷史,或許有助於我們探索世界觀的界線,還可能看得更遠。我們是如何成為無意義的宇宙中被動的機械?這些信念如何影響我們生活的方式?而我們由此又能前往何方?

———本書摘自《人類大宇宙》,2022年 9 月,遠流出版。

遠流出版_96
59 篇文章 ・ 29 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。