0

0
0

文字

分享

0
0
0

《自然》雜誌2013年度十大人物

果殼網_96
・2014/02/10 ・5114字 ・閱讀時間約 10 分鐘 ・SR值 549 ・八年級

文/S.西爾維希耶

《自然》雜誌評選出了10位年度新聞人物,這些人物來自生物學、物理學、醫學、天文學等多個領域,對2013年科學界產生了重要影響。其中,兩位華人科學家,張鋒、陳化蘭分別以在基因編輯和禽流感研究方面的貢獻躋身榜單。榜單之上也並不只有科學家的身影,菲律賓的外交官納季羅夫‧薩諾也因在全球氣候大會上的表現入榜。下面是這10位年度人物的介紹。

DNA「編輯大師」:張鋒(Zhang Feng)

w0BGrSeLW6kYceluQT9aQpzz2Dul1GJdaey9IZF60pZ2AgAApAEAAEpQ
張鋒。圖片來源:Kent Dayton

憑藉一段髮夾序列和一個裂解酶,細菌可以降解病毒的DNA並保護自己。而這一簡簡單單的DNA剪接機制,在2013年卻成為了生物研究領域的最大熱門之一。而促使它成為如此熱門的,是一名熱衷於研究基因工具的神經生物學家。

現年32歲的張鋒任職於麻省理工學院。他將這套被稱為CRISPR/Cas的細菌免疫系統改造成為一套簡單廉價的基因改造工具。今年一月,他的實驗室發現這套系統可以被用於真核細胞的基因編輯,使得它可以用來編輯植物、小鼠、乃至人類細胞的基因。

CRISPR/Cas系統是多數細菌用來保護自己免受病毒侵染的防禦機制。藉由這一套系統,細菌可以識別並降解來自病毒的DNA,從而阻止病毒的感染和複製。與目前常用的基因敲除技術:鋅指(Zinc-finger nuclease,ZFN)、TALEN相比,CRISPR/Cas敲除系統無需表達複雜的蛋白,使它更為簡單又有效率。

張鋒教授目前致力於利用這一技術構建基因敲除資料庫,這意味著科學家可以根據這套資料庫,對任何器官中任何基因進行敲除。而他透露自己最感興趣的部分是利用這套系統對一些精神疾病,如亨丁頓症及精神分裂症等進行治療。「CRISPR/Cas系統有助於幫助我們修正基因的微小突變。儘管只有少數人群攜帶這種致病突變,但這些突變對人類健康的影響則是災難性的。」張鋒說。

基因專利「衛士」:坦尼亞‧西蒙塞利(Tania Simoncelli)

t63lPFjqlP-27JwM9KSFSq_HOtjFdpQNudPjbk1bNY12AgAApAEAAEpQ
坦尼亞‧西蒙塞利。圖片來源:Eero Simoncelli

2005年,坦尼亞的一番言論讓美國民權組織(American Civil Liberties Union,ACLU)的高級律師大吃一驚。作為該組織的科學顧問,她指出有些公司正在搶奪人類基因的專利。律師克里斯‧漢森(Chris Hansen)向她大喊:「這太荒謬了!我們能控告誰呢?」

保護人類基因的專利並非易事。儘管ALCU一直在呼籲聯邦政府採取措施,但仍沒有哪項專利因此受到威脅。西蒙塞利認為搶注基因專利會帶來嚴重後果,不僅影響個體醫療,也會導致科研受阻。

在過去的幾年中,西蒙塞利與ACLU一起指控恆河沙遺傳公司(Myriad Genetics)的基因專利違規。該公司擁有兩個和乳腺癌密切相關的基因專利,並藉此壟斷與該基因相關的乳腺癌預防和保護措施。西蒙塞利呼籲科學家和患者共同支持她的控告。最終,聯邦法院裁定西蒙塞利勝訴。

漢森這麼評價西蒙塞利:「她在說服別人方面具有不可思議的能力,她會固執的與你討論,直至你同意她的觀點。」

戰勝病毒:黛博拉‧佩爾紹德(Deborah Persaud)

tKBVZhZ6OrtuTyNXtgj2VeMCPLz8RLg40CI8Rtz6BBh2AgAApAEAAEpQ
黛博拉‧佩爾紹德。圖片來源:Johns Hopkins Medicine

今年三月,佩爾紹德發表了一項可喜的研究成果:一名出生在密西西比州的HIV病毒攜帶者在停止治療一年後,體內仍未出現HIV病毒。佩爾紹德認為必須嚴肅的對待這一結果。在此之前約有40多個類似病例,然而在進行基因檢測後,發現它們中的多數是假陽性結果。

佩爾紹德的工作始於2012年9月。當時她的同事蓋伊(Gay)在治療一名嬰兒時使用了高劑量的抗逆轉錄病毒藥物。這名嬰兒的母親感染有HIV病毒,且在孕期未接受相關治療。在一次檢查中,蓋伊發現這名嬰兒有五個月未接受藥物治療。隨後她對嬰兒進行了全面檢查,並發現嬰兒體內已經沒有HIV病毒了。佩爾紹德、蓋伊與合作者盧蘇里加(Luzuriaga)對這名嬰兒進行了詳細的檢查,並將結果發表,引起了媒體的關注。

在媒體的干預下,類似的較危險的臨床試驗成為可能。但隨之而來的是,更多從出生即開始接受反轉錄病毒藥物治療的患者要求停藥,觀察自己體內是否已經沒有HIV病毒。一方面,醫生仍建議患者採用此前的治療方案,因為哪怕僅有一日的停藥都可能會帶來危險。但另一方面,一旦實驗結果得到確證,將會有數以百計的HIV兒童能夠從昂貴的藥物中解脫出來。

「另一個地球」探索者:米克爾‧馬約爾(Michel Mayor)

aBL77OqvaTnBCHOdqna4woSHUT3nr6SUXAXaU5mpS3F2AgAApAEAAEpQ
米克爾‧馬約爾。圖片來源:Rita Scaglia

在過去的20年時間裡,米克爾‧馬約爾和他的團隊找到了數百個系外行星。但2013年的一項發現讓這名71歲高齡的「行星獵手」成為母光焦點:他的團隊發現的編號為「Kepler-78b」的行星在密度和大小上都與地球接近,這也使得這顆行星成為迄今為止最像地球的行星。

很難找到與地球完全一樣的行星,Kepler-78b的軌道與它的母星相距過近,這顆星球的表面已經熔化。然而馬約爾認為,找到真正的「孿生地球」只是時間問題。

馬約爾的研究堪稱碩果纍纍,1995年11月,他和他的學生找到了第一顆系外行星。從那以後,他的研究團隊總共找到了約1050顆這樣的行星。他的競爭對手傑夫‧馬西(Geoff Marcy)稱:馬約爾在技術上的天賦使他成功,「每年馬約爾都會改良他的設備,而每次的效果都令我震驚。」

氣候「良心」:納季羅夫‧薩諾(Naderev Saño)

7ZahCntJ75JbHwbYXLMniy2gWAVCHFL1P6Vc5DTXE-Z2AgAApAEAAEpQ
納季羅夫‧薩諾。圖片來源:AP

在華沙全球氣候大會上,菲律賓代表團的納季羅夫‧薩諾帶來一場催人淚下的演講。沒人知道這名菲律賓外交官的家鄉正遭遇什麼:他唯一的兄弟加入了緊急救援隊伍,在颱風海燕席捲過後的災區,搜索居民的遺體。

他決定絕食直到氣候大會上形成具有意義的提議。薩諾說:「我們的國家正在承受極端氣候的肆虐。」

國際組織對於全球變暖的應對時至今日依然進展緩慢,而薩諾本人也並不清楚他的演講會帶來怎樣的影響。他認為颱風海燕將世界的關注集中在氣候問題上。曾經學習過氣候的他,認為科學家並不會將單一的氣候災難歸因於氣候變暖。但至少,氣候變暖導致了更多的暴風是科學界的共識。

他說:「我希望這些行為在緩慢推進氣候共識之餘,我們可以激發更多意義深遠的想法。」

隕石「獵人」:維克托‧格羅霍夫斯基(Viktor Grokhovsky)

RNCSXUgJSDY-2Qy0VRS80bHEaYM1pobEmdulJ27k0Nh2AgAApAEAAEpQ
維克托‧格羅霍夫斯基。圖片來源:Natalia Nikitina

2月15日一次隕石撞擊,使得維克托‧格羅霍夫斯基躋身2013十大人物行列。這名來自烏達爾聯邦大學的冶金學家並未親身觀測到這次撞擊,但當他聽說車裡雅賓斯克州發生了爆炸而且數千塊窗戶被震碎時,他突然意識到有一塊隕石撞在地球上。

爆炸發生之後的幾天,格羅霍夫斯基夜以繼日地工作,他試圖計算隕石的下墜曲線並預測隕石碎片的位置。搜索隊根據他的指示,找到了700多塊隕石碎片,總重5.5公斤。然而他最大的成就是發生在2013年年末:根據他的計算,搜索隊最終在一個湖底,找到了一塊重約570公斤的碎片!

這些隕石碎片被送往世界各地的實驗室進行分析,它們所埋藏的秘密正被逐漸被揭露。格羅霍夫斯基說:「對於我來說,這是一生一次的大事,我真幸運我能參與到對這名太空來客的調查。」

流感「前哨」:陳化蘭(Chen Hualan)

ORLn2jg_uqBruYH0UzPRFyrJvsjuf1QEvgpGUbWenvB2AgAApAEAAEpQ
陳化蘭。圖片來源:哈爾濱獸醫研究所。

2013年4月,全世界的病毒學家和衛生官員都把目光聚焦在中國。一種新型的禽流感病毒H7N9正開始蔓延,引起大流行還有死亡。中國農科院哈爾濱獸醫研究所的陳化蘭院士,此時站在了對抗疫情的第一線。他們停止了所有的研究,將工作重點放在H7N9上,致力尋找它從鳥類或其他動物傳播並感染人類的途徑。

在首例H7N9病例得到確認的48小時內,陳化蘭研究小組以及上海動物疾控中心從周邊的土壤、水和家禽市場中採集了約1000份樣本,其中20份檢出H7N9陽性,均來自於上海家禽市場。當地政府迅速關閉了這些市場,這也使得感染率迅速下降。

病情得到控制,新增病例減少。這給陳化蘭研究團隊更多的時間研究這一病毒。陳化蘭團隊認為,相比於另一禽流感病毒H5N1,H7N9更易經由家禽感染人類。雖然目前沒有明確的證據證明H7N9可以在人類之間傳播,但陳化蘭團隊認為,病毒具有這種潛力。

陳化蘭實驗室目前關注流感病毒的監測。夏天和秋天新病例出現減少,一方面要歸功於相關單位的及時應對,另一方面也有可能是病毒感染力在氣溫高時較弱。現在又到了冬季,必須有更多的監測,陳化蘭自己也認為:「流感病毒的檢測是我們實驗室的首要任務」。

克隆「酋長」:肖克萊特‧米塔利波夫(Shoukhrat Mitalipov)

E-sXmTPHh7UdynCTIA9eU8hzZ2XwaRwjCRbownn8ArV2AgAApAEAAEpQ
肖克萊特‧米塔利波夫。圖片來源:Oregon Health & Science University

2007年,美國奧勒崗健康與科學大學(Oregon Health and Science University)的生殖生物學專家米塔利波夫(Shoukhrat Mitalipov),計畫使用胚胎來獲得個體特異性的幹細胞,治療患者的疾病。將實現藉由人類皮膚細胞複製產生胚胎幹細胞的理想。由於研究需要大量的人類受精卵培育胚胎並犧牲,其面臨的困境遠不止是技術難題那麼簡單。最終,他任職的學校為他建立了新的實驗室,如此他才能夠合法操作和處理人類胚胎。

米塔利波夫的研究始於2012年十月,在同年的聖誕節前,實驗室利用核移植獲得了四株細胞株。他認為憑藉他之前在猴子中進行的實驗,他能夠最終達成自己的目標。在這一領域他面臨較少的競爭,來自社會的監管和輿論阻止了更多的科學家「分一杯羹」。

他接下來打算爭取政府的資助用於研究線粒體移植的技術,使得新生兒不必再受到線粒體相關遺傳病的困擾。他同時也把從複製胚胎中獲得的幹細胞與分離的人類細胞加以比較。而目前他面臨的最大問題仍然是資金,聯邦政府不會對其關於細胞株的實驗提供經費,他不得不四處尋求經費與合作,導致這一實驗目前進展緩慢。他無奈地表示:「好像我們又回到了幾年之前。」。(可以參考〈科學家成功複製人類幹細胞〉

「騷擾之眼」——凱瑟琳‧克蘭西(Kathryn Clancy)

qRvFMdeUIL089xJtiEB8kWYqv-eeHeEMI2uZObEcesp2AgAApAEAAEpQ
凱瑟琳‧克蘭西。圖片來源:L. Brian Stauffer

對於田野調查,人類學家凱瑟琳‧克蘭西充滿了美好的回憶。然而一次偶然的交談使得她意識到這一活動可能給人帶來完全不同的回憶。她的朋友透露自己曾經在調查時遭遇性騷擾。從那時起,克蘭西決定採取一些行動。

她的行動從2012年1月開始。起初她在博客上匿名發佈關於她朋友被性騷擾的故事博取關注,後來她意識到,這樣還遠遠不夠。於是,她與幾名合作者一起發起了網絡調查,呼籲人類學家分享自己在田野調查中的經歷,並收集了數據。

今年四月,在美國體質人類學家會議上,凱瑟琳投下了這枚「重磅炸彈」:在參與調查的124名人類學家中,有59%經歷過性有關的言語暗示,而約有18%則受到身體上的性騷擾。女學生通常是主要受害者,而施害者多是一起進行調查的博士生、博士後乃至教授。對此許多人認為,田野調查中來自家庭和朋友監督的缺失,是引發不良行為的主要原因。

在調查中克蘭西還發現,由於害怕會被排除在調查以外無法獲得研究所需數據,受害者們往往選擇對自己的遭遇忍氣吞聲。只有極少數的受害者選擇報告自己的遭遇。「年輕的研究人員正因為這些經歷退出我們的行業,毫無疑問,我們失去了優秀的同伴。」克蘭西說。

「太陽守望者」——亨利‧斯奈斯(Henry Snaith)

rU91lajjOuvDi4B5-ZTnzcyY1l-nrF7uU1XPabU0-gl2AgAApAEAAEpQ
亨利‧斯奈斯。圖片來源:Douglas Fry/Piranha Photography

在這一年,斯奈斯讓所有材料學家大吃一驚。他利用鈣鈦礦半導體,大大地提升了太陽能電池的效率。在過去的幾年中,研究人員一直試圖用這一材料製造低效而複雜的光伏設備。斯奈斯意識到經由更有效的純化和設計,它們能夠產生更高的效率。

目前世界上絕大多數太陽能電池由硅製作,它們能夠將吸收到的17-25%的光能轉化為電能,但絕大多數造價高昂。薄膜太陽能電池更加廉價,但效率較低。鈣鈦礦光電池可被視作兩者的結合。

現在,斯奈斯設計的電池轉化效率已經可以達到15%,他認為最終鈣鈦礦電池的轉化率有望達到29%——這是目前砷化鎵晶體電池的轉化率。砷化鎵晶體電池多被用在衛星上,因造價高昂難以被廣泛採用。

下一步斯奈斯計畫繼續他的研究,如果鈣鈦礦電池能夠運轉良好,他將考慮如何更好的儲存這些電能。「當這些研究告一段落,我會將工作重點轉移至對更好的電極的探索上。」斯奈斯說。

資料來源:

365 days: Nature‘s 10. Nature.

 

轉載自果殼網

文章難易度
果殼網_96
108 篇文章 ・ 7 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
1

文字

分享

0
1
1
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
研之有物│中央研究院_96
285 篇文章 ・ 2905 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1189 篇文章 ・ 1742 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
鑑識故事系列:狗咬狗,滿嘴…mtDNA
胡中行_96
・2023/08/14 ・1957字 ・閱讀時間約 4 分鐘

愛犬慘死,兇手逍遙法外。縱然不是每個人都如電影《捍衛任務》的 Johon Wick,身懷絕技,謀求私刑正義;[1]透過科學管道,至少可以討個答案,獲得心靈平靜。義大利某隻母的傑克羅素㹴(Jack Russell Terrier),橫屍寵物旅館的院子,得年 8 歲。犬舍的網子破裂,有向內拉扯的痕跡。寵物旅館老闆養的3隻荷花瓦特犬(Hovawart),嫌疑重大;然而事後到場的獸醫,卻認為野生狐狸或海狸才是罪魁禍首。傑克羅素㹴的主人心有不甘,遂找上波隆那的一所動物疾病預防研究機構(L’Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna)。[2]

非當事傑克羅素㹴。圖/Oskar Kadaksoo on Unsplash

解剖狗屍

這隻傑克羅素㹴死後,在日均溫 7 °C 的環境,被擱置 18 到 20 個鐘頭。接著於 − 18 °C 的冰庫裡,凍了 1 個月,才被研究機構拖出來驗屍。從外觀看來,牠生前的健康狀況良好。不過,毛皮沾血,且有 14 道 7 至 10 公厘,略呈橢圓,邊緣清楚的咬傷,分佈於頸、肩、胸、肋弓、大腿(照片)和鼠蹊。另外,腰部還有個 10 公分長,2.5 公分寬的大傷口。剝掉狗皮後,可見創傷頗深:左邊頸、胸的肌肉浸潤於血中;胸腔與腹腔內,也有輕微出血;肋間肌、肋膜及腹壁穿孔;並有一根肋骨骨折。綜合以上,牠顯然死於咬傷穿透胸部,[2]使空氣在肋膜腔中累積而壓迫肺臟,[3]所導致的氣胸(pneumothorax)。[2]那麼究竟是什麼動物如此殘暴?

nDNA vs. mtDNA

兇手遺留在死者身上的 DNA,是指認身份的好線索。[2]細胞中的細胞核(nucleus)和粒線體(mitochondria)都含有 DNA,[4]分別簡稱為 nDNAmtDNA,兩者並不相同。以人類為例,前者包含從雙親得來的 2 至 3 萬個基因;後者則有 37 個,主要遺傳自母親。[5]分析 nDNA 的短縱列重複序列(short tandem repeat;STR),也就是一些鑑別度高的小片段;[4]或是單核苷酸多型性(single nucleotide polymorphism;SNP),即DNA序列中單一鹼基的變異,[6]便能辨識個體。[2]

以此案來說,最理想的作法,當然是從㹴犬身上的咬傷取樣,分析 nDNA,再比對兇嫌的樣本。可惜屍體於運送的過程中,大概已經受到汙染,驗了也未必準確。再加上寵物旅館的老闆,絕不可能讓3隻荷花瓦特犬配合調查,這個辦案方向根本毫無希望。[2]

好在天無絕人之路,數根 5 到 10 公分不等,顏色有深有淺的毛髮,不僅卡在死者的牙縫裡(照片),還纏於腳掌上。它們出現的位置奇怪,長得又跟梗犬的不同,或許正是來自兇手。儘管鑑識採集的毛髮時常不帶毛囊,[2]而髮幹的 nDNA 含量又極低,不過會有相當充足的 mtDNA,[7]可以辨識物種。於是,鑑識人員挑了最長又最完整的 4 根送驗。[2]

死者的腳掌,纏著兇嫌的毛髮。圖/參考資料 2,Figure 3(CC BY 4.0)

狼 vs. 犬

毛髮 mtDNA 分析的結果,顯示其來源非狼即犬,才不是獸醫瞎說的狐狸或海狸。如果進一步由傷口位置,回推攻擊方式,嫌疑範圍又會縮得更小:[2]

(Canis lupus)作為掠食者,攻擊講求效率。最好不太耗費能量,便獵得豐美肉食。特別是遇到傑克羅素㹴,這種小型犬的時候,會朝頸部直接咬死,然後狼吞虎嚥。此外,該寵物旅館附近,沒有狼出沒。[2]

相對地,(Canis lupus familiaris)打起架來,才會全身從頭到尾胡亂咬。好不容易把對方搞癱了,卻放著全屍一口沒吃。因此,本案的兇手應該是中、大型犬,而且當時有機會與死者接觸的,唯有那 3 隻毛髮長度和顏色,與證物完全吻合的荷花瓦特犬。[2]

非當事荷花瓦特犬。圖/Oxborrow on Wikimedia Commons(Public Domain)

身後貢獻

鑑識團隊完成狗主人託付的任務後,撰文介紹將 mtDNA 的細胞色素 b 基因(cytochrome b gene),放大並定序,最後確認物種的細節。[2]雖然不曉得他們的努力,是否有助司法公道,但是好歹已為學術研究貢獻心力。天下蒼生多少默默無聞,死後被立碑著傳的又有幾個?一隻備受寵愛的傑克羅素㹴,能榮登學術期刊,也算不枉此生。

  

參考資料

  1. John Wick’. IMDb. (Accessed on 02 AUG 2023)
  2. Roccaro M, Bini C, Fais P, et al. (2021) ‘Who killed my dog? Use of forensic genetics to investigate an enigmatic case’. International Journal of Legal Medicine, 135, 387–392.
  3. McKnight CL, Burns B. (15 FEB 2023) ‘Pneumothorax’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Department of Emergency Services and Public Protection. ‘Nuclear DNA’. U.S. Connecticut’s Official State Website. (Accessed on 01 AUG 2023)
  5. Storen R, Smith E. (11 JUN 2021) ‘Mitochondrial donation in Australia.’ FlagPost by Parliament of Australia.
  6. Gunter C. (01 AUG 2023) ‘Single Nucleotide Polymorphisms (SNPs)’. U.S. National Human Genome Research Institute.
  7. Tridico SR, Koch S, Michaud A, et al. (2014) ‘Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?’. Proceedings of the Royal Society B, 2812014175520141755.
胡中行_96
151 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。