0

0
0

文字

分享

0
0
0

綠藻變原油?微藻生質燃料的新技術!

生質能源趨勢 BioEnergy Today_96
・2014/01/15 ・1192字 ・閱讀時間約 2 分鐘 ・SR值 582 ・九年級

hirescrude_2大家都知道,我們目前使用的石化原油是由數千萬年前的生物或藻類死亡後沈積在海底,經過地層變化產生的高溫高壓反應後,才會得到珍貴的原油,也因為轉化條件過於嚴苛,我們將石化原油歸類為不可再生能源。然而最近科學家發展了新的技術,能將海藻變成原油的時間從數千萬年濃縮至一個小時,若能取得足夠的生物質進行轉化,將有可能取代石化原油。

Screen Shot 2014-01-15 at 12.51.08 AM
由左至右:藻泥,經轉化後的生質原油,生質原油精製之汽油
(圖片來源:PNNL)

位於美國的西北太平洋國家研究室在2013年年底宣佈他們開發了新的微藻轉化方法:熱水解液化,透過模仿石化原油的生產方式,將微藻生物質置於密閉反應器中並提供高溫高壓,僅需一個小時的時間即可產生出與原油極為類似的生質原油。生質原油經過提煉,可以用於航空油、汽油或是柴油。而這個反應除了生質原油之外,還會產生水、天然氣以及營養鹽。天然氣也可以用於產生能源,水跟營養鹽則可用於培養微藻以產生更多的微藻生物質。

生質能源趨勢之前有許多篇幅介紹過微藻生質能源,微藻指的是能行光合作用的單細胞藻類,因為生長快速、富含油脂,是近幾年來備受矚目的生質能源作物。然而之前的研究,大多數著重於如何培養高含油量的微藻並萃取製作生質柴油。其中遇到許多瓶頸,最大的困難就是如何低成本的培養含油量高的藻種以及降低萃取油脂的成本。此項新技術將可避開此兩點技術瓶頸,熱水解液化可使用較低品質的微藻,並且無須經過萃取直接將微藻轉化成原油。除了西北太平洋國家實驗室之外,美國部分藻類生質能源公司如Algenol也開始小規模微藻熱水解試驗。毫無疑問,微藻熱水解轉化是藻類生質能源目前受到高度重視的技術。

Screen Shot 2014-01-15 at 12.57.46 AM
NASA的海上微藻養殖OMEGA系統

台灣陽光充足,氣候上相當適合發展微藻養殖,實際上台灣的微藻產量在國際上排名前三。然而受限於土地價格昂貴,微藻生物質只能用於健康食品與化妝品等高價產品來回收成本。若要在台灣發展藻類生質能源,最大的可能就是利用周圍沿海,發展海上養殖技術。例如NASA正在開發的OMEGA系統,正是以海上微藻養殖為基礎,結合廢水處理、其他替代能源技術甚至是水產養殖來提高整個系統的價值。計劃主持人Jonathan Trent在TED有一場相當精彩的演講。有興趣的讀者可以觀看TED上的影片。筆者相信在未來十年裡,各種替代能源的用量會大幅增加,而微藻生質能源也將會是未來加油站裡會被看見的選項之一。

-----廣告,請繼續往下閱讀-----

相關閱讀:

文章難易度
生質能源趨勢 BioEnergy Today_96
20 篇文章 ・ 3 位粉絲
三個大學同學在畢業後各自步上不同的旅程,卻對於生質能源有著相同的興趣與期待,因此希望藉由寫作整理所知所學,並與全世界分享與討論。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

6
2

文字

分享

0
6
2
魚與熊掌可以兼得!不只能發電,還二氧化碳負排放的科技——《在大滅絕來臨前》
臉譜出版_96
・2022/02/06 ・3122字 ・閱讀時間約 6 分鐘

「氣候工作」公司(那間我付錢請他們把碳排放埋到冰島的公司)是由克里斯多福.格巴德(Christoph Gebald)與簡.沃茲巴赫(Jan Wurzbacher)這兩位大學時代的朋友共同創辦的。「我們是上大學第一天認識的,」沃茲巴赫回憶道,「我想我們第一週就問了彼此:『嘿,你想要做什麼?』然後我說:『嗯,我想要創立自己的公司。』」他們後來將研究所的獎學金分為兩份;兩人都花一半時間做博士班的研究,並且用另一半時間讓公司成長。

就跟拉克納一樣,他們兩個人面對了許多質疑。有人說,他們做的事情只是在轉移焦點。如果大家認為有方法能從大氣中抽走二氧化碳,那他們就會排放更多。「大家會反對我們說:『嗯,老兄,你們不該這麼做,』」沃茲巴赫跟我說,「但我們一直很頑固。」現年 35、6 歲的沃茲巴赫身材纖瘦,頂著一頭孩子般的蓬亂黑髮。我和他在「氣候工作」公司的蘇黎世總部碰面。那棟建物裡不僅有辦公室,也有金屬加工廠,現場不僅帶著科技新創的氛圍,也有點腳踏車店的感覺。

「把二氧化碳從流動的空氣中抽出來並不是什麼尖端科技,」沃茲巴赫跟我說,「這也不是什麼新鮮事。過去五十年來,人類都會從氣流中過濾二氧化碳,只是用途不同。」

「氣候工作」公司的二氧化碳移除系統有兩道程序。※出處:MGMT. design

從空氣中抽碳所面臨的挑戰

譬如在潛水艇中,船員呼出的二氧化碳必須排出去,否則會累積出對人體而言很危險的濃度。

-----廣告,請繼續往下閱讀-----

但是能從空氣中抽出碳是一回事,要能大規模執行則又是另一回事。燃燒化石燃料會產生能源,從科技中捕捉二氧化碳也「需要」能源。只要能源是透過燃燒化石燃料所產生的,那就一定會增加必須捕捉的碳量。

第二個重大挑戰是處置方式。捕捉下來的二氧化碳需要送到安全的地方儲存。「玄武岩的好處是我們很好對外解釋,」沃茲巴赫說,「如果有人問:『嘿,但這真的安全嗎?』答案很單純:兩年內,它就會變成位在地下一公里處的石頭。就這麼簡單。」合適的地下儲存地點並不少見,但也不普遍;這表示,若要打造大型的碳捕捉工廠,要不是必須有個合適的地理位置,否則就得把二氧化碳運到遠處。

由暗色玄武岩組成的北愛爾蘭巨人堤道。圖/維基百科

最後是成本的問題。把二氧化碳從空氣中取出來需要經費,現在這需要花很多的錢。把一噸重的碳排放變成石頭,需要付給「氣候工作」公司 1000 美元。我將 544 公斤的配額,都用在飛往雷克雅維克的單程飛機上,於是包含回程飛機以及去瑞士的航程在內的碳排放,就只能留在空中飄蕩。沃茲巴赫跟我保證,隨著愈來愈多的捕捉裝置裝設完成,價格也會下降;在 10 年左右的時間內,可望降到每噸 100 美元。

如果碳排放以類似比例課稅的話,那麼就更容易計算:基本上,只要抽出一噸二氧化碳,就能少付一噸的碳稅。但如果碳仍舊能免費排入大氣中,那又有誰願意付這筆錢呢?即使一噸只要付 100 美元,把十億噸二氧化碳(只是世界年度排放量的一小部分)埋起來,就需要花上 1000 億美元。

-----廣告,請繼續往下閱讀-----

我也問沃茲巴赫,這個世界是否已準備好為直接從空氣中捕捉碳的技術付費。「也許我們太早投入了,」沃茲巴赫若有所思地說,「也許時機正好;又或許我們遲了一步——天曉得。」

生質能與碳捕集和封存 BECCS

一如有許多方式能把二氧化碳釋放進空氣中,其實也有很多(潛在的)方式能移除二氧化碳。一種名為「加速風化(enhanced weathering)」的技術可說是我在赫利舍迪電廠參觀到的工程的反向版。這個概念並非將二氧化碳注入石頭中,而是將石頭帶到地表與二氧化碳接觸。

首先,要先將人為開採並碾碎的玄武岩散布到世界上炎熱、潮溼地帶的農田裡,而二氧化碳與這些碎掉的石頭起化學反應後,就能將其從空氣中抽取出來。或者有人也提出,可以碾碎火山岩中常見的綠色礦物質:橄欖石,再撒入海洋中溶解。這麼做能使海洋吸收更多的二氧化碳,而且還有另一個好處:對抗海洋酸化。

另一類負排放科技(negative-emissions technologies,簡稱為 NETs)的靈感則源自於生物。植物生長時會吸收二氧化碳,而當它們腐朽時,二氧化碳就會回到大氣中。種植新的森林能在植物體成熟之前吸收碳;有一篇瑞士研究人員最新的研究評估,種植一兆棵樹就能在接下來數十年中,從大氣中移除 2000 億噸的碳。其他研究人員認為,這項數據將事實誇大了十倍甚至更多。儘管如此,他們也評道,新植林吸收碳的能力「還是很重要」。

-----廣告,請繼續往下閱讀-----
植林吸碳的能力很重要。圖/Pexels

為了解決朽木的問題,許多人提出各種技術方案。其一是將成樹砍倒並埋在溝渠裡;因為缺乏氧氣,就能防止樹木腐朽,以及隨之而來的二氧化碳排放。另一個計畫則只需要蒐集玉米梗等作物殘留物,並倒入深海;在黑暗、冰冷的深海裡,這些農餘腐爛的速度會很慢,甚至完全不腐爛。這些聽起來可能很怪的想法,也都是從自然中汲取靈感。在石炭紀(Carboniferous),有大量的植物遭到淹沒並埋於地底。這些植物後來就變成煤礦——如果這些東西可以保留在地底,理論上就能把碳永遠留在那裡。

林地復育(Reforestation)與注入地下的技術相互結合後,即為「生質能與碳捕集和封存(Bioenergy with carbon capture and storage)」——BECCS(發音為「becks」)。

IPCC 所使用的預測模型極度傾向 BECCS,因為它可以同時達到負排放與發電兩種目的。這種「魚與熊掌兼得」的辦法,以氣候數學的角度來看,幾乎所向無敵。

BECCS 的構想是種植能從空氣中吸取碳的樹木(以及部分穀物),接著便透過燃燒樹木來發電,所產生的二氧化碳再從煙囪直接捕捉下來、送入地底。(2019 年,世界首個 BECCS 的前導實驗已在英格蘭北部一座木顆粒燃料發電廠展開。)

-----廣告,請繼續往下閱讀-----

替代方案的土地面積要廣、數量要大

這些替代方案所面臨的挑戰就跟直接從空氣中捕捉碳一樣,問題在於規模。馬里蘭大學的教授(University of Maryland)曾寧(Ning Zeng)是首創「樹木砍伐與儲存」概念的人。根據他的計算,若要每年消去 50 億噸的碳,總共需要 1000 萬條埋樹溝渠,而且每一條都要跟奧運標準游泳池一樣大。「假設有一組一共 10 人的人馬每週可以用機械施工,挖出一條溝渠,」他寫道,「那也需要 20 萬組(200 萬名工人)人馬與機器。」

根據德國科學家一篇最新的研究,若要藉由「加速風化」移除十億噸的二氧化碳,那就得要開採、碾碎並運送約 30 億噸的玄武岩。作者群指出,需要開採、磨碎與輸送的石頭「雖然數量非常大」,但其實還比每年約 80 億噸的煤礦開採量要來得少。

若要種植十億棵樹木,大約需要造出 906.5 萬平方公里大的新林地。這片森林面積之廣,會跟包含阿拉斯加在內的美國國土差不多大。這麼大片的耕地不再用於生產農作的話,可能造成上百萬人面臨飢餓。喬治城大學的教授歐盧費米.泰伊洛(Olúfẹ́miO. Táíwò)近期表示,有一種危機是「我們每邁出一大步的同時,卻在公平正義上倒退兩步。」然而,大家也不清楚,用未開發的土地是否就會比較安全。

樹木是深色的,所以若把凍土變成森林,反而會增加地球要吸納的能量,並造成全球暖化,最後也無法達成目標。解決這個問題的方法之一,可能是用 CRISPR 技術基因改造出淺色的樹木。就我所知,目前還沒有人提出這個構想,但似乎只是遲早的事。

-----廣告,請繼續往下閱讀-----
——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
團藻:水田裡的夏日花火
MiTalk
・2018/06/13 ・2204字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

江殷儒
中央研究院生物多樣性研究中心 副研究員​
​台灣微生物歲時記

 

直到現在,我依然享受騎乘機車的自在隨意。

初夏時節,騎機車自南港舊庄進入遍植包種茶的淺山地帶後,轉汐碇路可到達石碇。沿途林蔭鬱鬱,山澗處處,令人暑氣全消。沿著靜安路蜿蜒而行,隨著滿山遍野的天燈殘骸漸增,即達平溪十分一帶。進入雙溪後,群山猛然往兩側退去,道路豁然開朗,筆直地進入貢寮。繼續向東行進,嗅聞到海風氣味後,即可到達農田連綿廣衍的田寮洋。

位於新北市東北一隅的生態樂園-貢寮田寮洋。此處的水田在初夏可以找到團藻。記得隨身帶上封口袋與放大鏡。圖/江殷儒提供。

田寮洋面積約200公頃,是雙溪河下游的洪氾平原。雙溪河在此處形成大曲流,可供洪水宣洩。因此,田寮洋具有調節雙溪河水位的功能。

-----廣告,請繼續往下閱讀-----

田寮洋以稻田、筊白筍田為構成主體。經由水田耕作的持續干擾,田寮洋得以遠離陸化的命運,長期維持濕地的型態。周遭環繞低矮的丘陵,加上如馬賽克鑲嵌般的水塘與草澤,讓棲地多樣化的田寮洋成為台北盆地重要的生物庇護所,成為許多留鳥的寶貴棲所,亦是候鳥南北遷徙的補給站。跟著水鳥遷徙傳佈的,除了令人聞之色變的禽流感,還有各式各樣的微藻類,肉眼可見、姿態嬌媚的團藻。

漂浮著的滿江紅的水田或小埤塘,常常可以發現團藻的蹤跡。圖/江殷儒提供。

如果藻類也可以成為神奇寶貝的話,團藻絕對是最值得收服的對象之一。

團藻性喜棲息於富含有機質的靜水域,如淺塘與雨後的暫時性水窪。初夏的田寮洋,在棲息著少量滿江紅的水田裡,很容易發現團藻的蹤跡,甚至會形成極度優勢的藻類純群。團藻與滿江紅要求相似的水質條件;然而,佈滿滿江紅的水田,由於光照缺乏,又會抑制團藻的生長。另一方面,團藻對農藥敏感。因此,棲息著團藻的水田,通常是禁絕或低度用藥的友善耕作水田。

-----廣告,請繼續往下閱讀-----

日本東京大學生物科學系野崎久義教授的研究團隊在2016年6月於貢寮田寮洋使用浮游網採集團藻。圖/江殷儒提供。

團藻的藻體是直徑1~5毫米的中空球形群體,是少數肉眼可見的微藻。在野外可以利用透明封口袋採集水田的水樣,於陽光下利用放大鏡貼近封口袋,即可觀察到一顆顆的團藻。也因為極易觀察,顯微鏡之父─荷蘭微生物學家雷文霍克在十八世紀初期即描述過團藻。

分類上團藻屬於綠藻門,這類的藻類由於富含葉綠素 a 和 b,外觀呈現亮綠色。作為最原始的多細胞生物之一,團藻由數百至數萬個單細胞在球體表面排列組成,鑲嵌於由醣蛋白組成的膠質結構。同時,單細胞具有朝外的兩條游動鞭毛及感光用的眼點。

以光學顯微鏡觀察採集自田寮洋的團藻(Volvox carteri f. nagariensis)之無性球體。G: 無性生殖細胞 (gonidia)。圖片擷取自日本東京大學生物科學系野崎久義教授與中研院生物多樣性研究中心副研究員江殷儒博士合作,甫被接受的論文(1) (江殷儒提供)。

-----廣告,請繼續往下閱讀-----

團藻(Volvox spp.)的拉丁字義為「滾動」,顧名思義,放大鏡下的團藻會以優雅的姿態,緩緩地向光照處滾動(影片如下)。這需要令人驚異的協調性。因此,看各自獨立的單細胞,彼此需透過相連的原生質聯絡絲進行緊密的溝通協調。

https://www.youtube.com/watch?time_continue=11&v=nzO-ZSsqc9U

在演化研究上,團藻是相當重要的研究材料。因為團藻可能是單細胞真核生物過渡到多細胞生物的早期生命形式,也是有性生殖發生的起源。日本東京大學生物科學系的野崎久義教授在團藻演化上就有傑出的研究貢獻。

但如果你嘗試連續地培養團藻,難度其實很高,就像企圖強留夏日花火;最後你會在秋天前的某一日發現團藻的藻體萎縮崩潰。

-----廣告,請繼續往下閱讀-----

團藻的生活史。本圖修改自 Nishii 與 Miller 論文之圖二(2)。

藻類往往具有非常複雜的生活史,團藻就是如此。我們肉眼見到的球形群體,其實只是其生活史的一個片段。

在合適的水質條件下,團藻傾向進行無性生殖。群體內少數體型較大的生殖細胞會持續分裂,進而發展成子群體,隨後掉入空腔內。當母群體老化破裂後,子群體們即會釋出到環境中。溫度的劇烈變動及乾燥等理化條件,會促成團藻細胞產生費洛蒙,誘導團藻進入有性生殖,結果便是產生厚壁的休眠孢子,隨後沉入田土中,等待另一個夏天。

這樣的生活史,與水稻田的季節作息相呼應,彷彿團藻是上帝擔憂水稻太過孤單而創造的玩伴。當你漫步於夏日的田寮洋,除了利用望遠鏡觀察遠處的水鳥,不妨彎下腰,拿起放大鏡,仔細觀察田水中的寂靜角落,或許你也能發現那美麗炫目的團藻。

-----廣告,請繼續往下閱讀-----

參考文獻

  1. Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O, Matsuzaki R, Kawachi M, Chiang YR, Wu JT. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Bot Stud. 2018 Apr 3;59(1):10.
  2. Nishii I, Miller SM. Volvox: simple steps to developmental complexity? Curr Opin Plant Biol. 2010 Dec;13(6):646-53.

本文轉載自MiTalkzine,原文《初夏田寮洋的團藻

歡迎訂閱 微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

-----廣告,請繼續往下閱讀-----