0

0
0

文字

分享

0
0
0

綠藻變原油?微藻生質燃料的新技術!

生質能源趨勢 BioEnergy Today_96
・2014/01/15 ・1192字 ・閱讀時間約 2 分鐘 ・SR值 582 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

hirescrude_2大家都知道,我們目前使用的石化原油是由數千萬年前的生物或藻類死亡後沈積在海底,經過地層變化產生的高溫高壓反應後,才會得到珍貴的原油,也因為轉化條件過於嚴苛,我們將石化原油歸類為不可再生能源。然而最近科學家發展了新的技術,能將海藻變成原油的時間從數千萬年濃縮至一個小時,若能取得足夠的生物質進行轉化,將有可能取代石化原油。

Screen Shot 2014-01-15 at 12.51.08 AM
由左至右:藻泥,經轉化後的生質原油,生質原油精製之汽油
(圖片來源:PNNL)

位於美國的西北太平洋國家研究室在2013年年底宣佈他們開發了新的微藻轉化方法:熱水解液化,透過模仿石化原油的生產方式,將微藻生物質置於密閉反應器中並提供高溫高壓,僅需一個小時的時間即可產生出與原油極為類似的生質原油。生質原油經過提煉,可以用於航空油、汽油或是柴油。而這個反應除了生質原油之外,還會產生水、天然氣以及營養鹽。天然氣也可以用於產生能源,水跟營養鹽則可用於培養微藻以產生更多的微藻生物質。

生質能源趨勢之前有許多篇幅介紹過微藻生質能源,微藻指的是能行光合作用的單細胞藻類,因為生長快速、富含油脂,是近幾年來備受矚目的生質能源作物。然而之前的研究,大多數著重於如何培養高含油量的微藻並萃取製作生質柴油。其中遇到許多瓶頸,最大的困難就是如何低成本的培養含油量高的藻種以及降低萃取油脂的成本。此項新技術將可避開此兩點技術瓶頸,熱水解液化可使用較低品質的微藻,並且無須經過萃取直接將微藻轉化成原油。除了西北太平洋國家實驗室之外,美國部分藻類生質能源公司如Algenol也開始小規模微藻熱水解試驗。毫無疑問,微藻熱水解轉化是藻類生質能源目前受到高度重視的技術。

Screen Shot 2014-01-15 at 12.57.46 AM
NASA的海上微藻養殖OMEGA系統

台灣陽光充足,氣候上相當適合發展微藻養殖,實際上台灣的微藻產量在國際上排名前三。然而受限於土地價格昂貴,微藻生物質只能用於健康食品與化妝品等高價產品來回收成本。若要在台灣發展藻類生質能源,最大的可能就是利用周圍沿海,發展海上養殖技術。例如NASA正在開發的OMEGA系統,正是以海上微藻養殖為基礎,結合廢水處理、其他替代能源技術甚至是水產養殖來提高整個系統的價值。計劃主持人Jonathan Trent在TED有一場相當精彩的演講。有興趣的讀者可以觀看TED上的影片。筆者相信在未來十年裡,各種替代能源的用量會大幅增加,而微藻生質能源也將會是未來加油站裡會被看見的選項之一。

相關閱讀:

文章難易度
生質能源趨勢 BioEnergy Today_96
20 篇文章 ・ 2 位粉絲
三個大學同學在畢業後各自步上不同的旅程,卻對於生質能源有著相同的興趣與期待,因此希望藉由寫作整理所知所學,並與全世界分享與討論。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

6
2

文字

分享

0
6
2
魚與熊掌可以兼得!不只能發電,還二氧化碳負排放的科技——《在大滅絕來臨前》
臉譜出版_96
・2022/02/06 ・3122字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「氣候工作」公司(那間我付錢請他們把碳排放埋到冰島的公司)是由克里斯多福.格巴德(Christoph Gebald)與簡.沃茲巴赫(Jan Wurzbacher)這兩位大學時代的朋友共同創辦的。「我們是上大學第一天認識的,」沃茲巴赫回憶道,「我想我們第一週就問了彼此:『嘿,你想要做什麼?』然後我說:『嗯,我想要創立自己的公司。』」他們後來將研究所的獎學金分為兩份;兩人都花一半時間做博士班的研究,並且用另一半時間讓公司成長。

就跟拉克納一樣,他們兩個人面對了許多質疑。有人說,他們做的事情只是在轉移焦點。如果大家認為有方法能從大氣中抽走二氧化碳,那他們就會排放更多。「大家會反對我們說:『嗯,老兄,你們不該這麼做,』」沃茲巴赫跟我說,「但我們一直很頑固。」現年 35、6 歲的沃茲巴赫身材纖瘦,頂著一頭孩子般的蓬亂黑髮。我和他在「氣候工作」公司的蘇黎世總部碰面。那棟建物裡不僅有辦公室,也有金屬加工廠,現場不僅帶著科技新創的氛圍,也有點腳踏車店的感覺。

「把二氧化碳從流動的空氣中抽出來並不是什麼尖端科技,」沃茲巴赫跟我說,「這也不是什麼新鮮事。過去五十年來,人類都會從氣流中過濾二氧化碳,只是用途不同。」

「氣候工作」公司的二氧化碳移除系統有兩道程序。※出處:MGMT. design

從空氣中抽碳所面臨的挑戰

譬如在潛水艇中,船員呼出的二氧化碳必須排出去,否則會累積出對人體而言很危險的濃度。

但是能從空氣中抽出碳是一回事,要能大規模執行則又是另一回事。燃燒化石燃料會產生能源,從科技中捕捉二氧化碳也「需要」能源。只要能源是透過燃燒化石燃料所產生的,那就一定會增加必須捕捉的碳量。

第二個重大挑戰是處置方式。捕捉下來的二氧化碳需要送到安全的地方儲存。「玄武岩的好處是我們很好對外解釋,」沃茲巴赫說,「如果有人問:『嘿,但這真的安全嗎?』答案很單純:兩年內,它就會變成位在地下一公里處的石頭。就這麼簡單。」合適的地下儲存地點並不少見,但也不普遍;這表示,若要打造大型的碳捕捉工廠,要不是必須有個合適的地理位置,否則就得把二氧化碳運到遠處。

由暗色玄武岩組成的北愛爾蘭巨人堤道。圖/維基百科

最後是成本的問題。把二氧化碳從空氣中取出來需要經費,現在這需要花很多的錢。把一噸重的碳排放變成石頭,需要付給「氣候工作」公司 1000 美元。我將 544 公斤的配額,都用在飛往雷克雅維克的單程飛機上,於是包含回程飛機以及去瑞士的航程在內的碳排放,就只能留在空中飄蕩。沃茲巴赫跟我保證,隨著愈來愈多的捕捉裝置裝設完成,價格也會下降;在 10 年左右的時間內,可望降到每噸 100 美元。

如果碳排放以類似比例課稅的話,那麼就更容易計算:基本上,只要抽出一噸二氧化碳,就能少付一噸的碳稅。但如果碳仍舊能免費排入大氣中,那又有誰願意付這筆錢呢?即使一噸只要付 100 美元,把十億噸二氧化碳(只是世界年度排放量的一小部分)埋起來,就需要花上 1000 億美元。

我也問沃茲巴赫,這個世界是否已準備好為直接從空氣中捕捉碳的技術付費。「也許我們太早投入了,」沃茲巴赫若有所思地說,「也許時機正好;又或許我們遲了一步——天曉得。」

生質能與碳捕集和封存 BECCS

一如有許多方式能把二氧化碳釋放進空氣中,其實也有很多(潛在的)方式能移除二氧化碳。一種名為「加速風化(enhanced weathering)」的技術可說是我在赫利舍迪電廠參觀到的工程的反向版。這個概念並非將二氧化碳注入石頭中,而是將石頭帶到地表與二氧化碳接觸。

首先,要先將人為開採並碾碎的玄武岩散布到世界上炎熱、潮溼地帶的農田裡,而二氧化碳與這些碎掉的石頭起化學反應後,就能將其從空氣中抽取出來。或者有人也提出,可以碾碎火山岩中常見的綠色礦物質:橄欖石,再撒入海洋中溶解。這麼做能使海洋吸收更多的二氧化碳,而且還有另一個好處:對抗海洋酸化。

另一類負排放科技(negative-emissions technologies,簡稱為 NETs)的靈感則源自於生物。植物生長時會吸收二氧化碳,而當它們腐朽時,二氧化碳就會回到大氣中。種植新的森林能在植物體成熟之前吸收碳;有一篇瑞士研究人員最新的研究評估,種植一兆棵樹就能在接下來數十年中,從大氣中移除 2000 億噸的碳。其他研究人員認為,這項數據將事實誇大了十倍甚至更多。儘管如此,他們也評道,新植林吸收碳的能力「還是很重要」。

植林吸碳的能力很重要。圖/Pexels

為了解決朽木的問題,許多人提出各種技術方案。其一是將成樹砍倒並埋在溝渠裡;因為缺乏氧氣,就能防止樹木腐朽,以及隨之而來的二氧化碳排放。另一個計畫則只需要蒐集玉米梗等作物殘留物,並倒入深海;在黑暗、冰冷的深海裡,這些農餘腐爛的速度會很慢,甚至完全不腐爛。這些聽起來可能很怪的想法,也都是從自然中汲取靈感。在石炭紀(Carboniferous),有大量的植物遭到淹沒並埋於地底。這些植物後來就變成煤礦——如果這些東西可以保留在地底,理論上就能把碳永遠留在那裡。

林地復育(Reforestation)與注入地下的技術相互結合後,即為「生質能與碳捕集和封存(Bioenergy with carbon capture and storage)」——BECCS(發音為「becks」)。

IPCC 所使用的預測模型極度傾向 BECCS,因為它可以同時達到負排放與發電兩種目的。這種「魚與熊掌兼得」的辦法,以氣候數學的角度來看,幾乎所向無敵。

BECCS 的構想是種植能從空氣中吸取碳的樹木(以及部分穀物),接著便透過燃燒樹木來發電,所產生的二氧化碳再從煙囪直接捕捉下來、送入地底。(2019 年,世界首個 BECCS 的前導實驗已在英格蘭北部一座木顆粒燃料發電廠展開。)

替代方案的土地面積要廣、數量要大

這些替代方案所面臨的挑戰就跟直接從空氣中捕捉碳一樣,問題在於規模。馬里蘭大學的教授(University of Maryland)曾寧(Ning Zeng)是首創「樹木砍伐與儲存」概念的人。根據他的計算,若要每年消去 50 億噸的碳,總共需要 1000 萬條埋樹溝渠,而且每一條都要跟奧運標準游泳池一樣大。「假設有一組一共 10 人的人馬每週可以用機械施工,挖出一條溝渠,」他寫道,「那也需要 20 萬組(200 萬名工人)人馬與機器。」

根據德國科學家一篇最新的研究,若要藉由「加速風化」移除十億噸的二氧化碳,那就得要開採、碾碎並運送約 30 億噸的玄武岩。作者群指出,需要開採、磨碎與輸送的石頭「雖然數量非常大」,但其實還比每年約 80 億噸的煤礦開採量要來得少。

若要種植十億棵樹木,大約需要造出 906.5 萬平方公里大的新林地。這片森林面積之廣,會跟包含阿拉斯加在內的美國國土差不多大。這麼大片的耕地不再用於生產農作的話,可能造成上百萬人面臨飢餓。喬治城大學的教授歐盧費米.泰伊洛(Olúfẹ́miO. Táíwò)近期表示,有一種危機是「我們每邁出一大步的同時,卻在公平正義上倒退兩步。」然而,大家也不清楚,用未開發的土地是否就會比較安全。

樹木是深色的,所以若把凍土變成森林,反而會增加地球要吸納的能量,並造成全球暖化,最後也無法達成目標。解決這個問題的方法之一,可能是用 CRISPR 技術基因改造出淺色的樹木。就我所知,目前還沒有人提出這個構想,但似乎只是遲早的事。

——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版
臉譜出版_96
67 篇文章 ・ 245 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
團藻:水田裡的夏日花火
MiTalk
・2018/06/13 ・2204字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

江殷儒
中央研究院生物多樣性研究中心 副研究員​
​台灣微生物歲時記

 

直到現在,我依然享受騎乘機車的自在隨意。

初夏時節,騎機車自南港舊庄進入遍植包種茶的淺山地帶後,轉汐碇路可到達石碇。沿途林蔭鬱鬱,山澗處處,令人暑氣全消。沿著靜安路蜿蜒而行,隨著滿山遍野的天燈殘骸漸增,即達平溪十分一帶。進入雙溪後,群山猛然往兩側退去,道路豁然開朗,筆直地進入貢寮。繼續向東行進,嗅聞到海風氣味後,即可到達農田連綿廣衍的田寮洋。

位於新北市東北一隅的生態樂園-貢寮田寮洋。此處的水田在初夏可以找到團藻。記得隨身帶上封口袋與放大鏡。圖/江殷儒提供。

田寮洋面積約200公頃,是雙溪河下游的洪氾平原。雙溪河在此處形成大曲流,可供洪水宣洩。因此,田寮洋具有調節雙溪河水位的功能。

田寮洋以稻田、筊白筍田為構成主體。經由水田耕作的持續干擾,田寮洋得以遠離陸化的命運,長期維持濕地的型態。周遭環繞低矮的丘陵,加上如馬賽克鑲嵌般的水塘與草澤,讓棲地多樣化的田寮洋成為台北盆地重要的生物庇護所,成為許多留鳥的寶貴棲所,亦是候鳥南北遷徙的補給站。跟著水鳥遷徙傳佈的,除了令人聞之色變的禽流感,還有各式各樣的微藻類,肉眼可見、姿態嬌媚的團藻。

漂浮著的滿江紅的水田或小埤塘,常常可以發現團藻的蹤跡。圖/江殷儒提供。

如果藻類也可以成為神奇寶貝的話,團藻絕對是最值得收服的對象之一。

團藻性喜棲息於富含有機質的靜水域,如淺塘與雨後的暫時性水窪。初夏的田寮洋,在棲息著少量滿江紅的水田裡,很容易發現團藻的蹤跡,甚至會形成極度優勢的藻類純群。團藻與滿江紅要求相似的水質條件;然而,佈滿滿江紅的水田,由於光照缺乏,又會抑制團藻的生長。另一方面,團藻對農藥敏感。因此,棲息著團藻的水田,通常是禁絕或低度用藥的友善耕作水田。

日本東京大學生物科學系野崎久義教授的研究團隊在2016年6月於貢寮田寮洋使用浮游網採集團藻。圖/江殷儒提供。

團藻的藻體是直徑1~5毫米的中空球形群體,是少數肉眼可見的微藻。在野外可以利用透明封口袋採集水田的水樣,於陽光下利用放大鏡貼近封口袋,即可觀察到一顆顆的團藻。也因為極易觀察,顯微鏡之父─荷蘭微生物學家雷文霍克在十八世紀初期即描述過團藻。

分類上團藻屬於綠藻門,這類的藻類由於富含葉綠素 a 和 b,外觀呈現亮綠色。作為最原始的多細胞生物之一,團藻由數百至數萬個單細胞在球體表面排列組成,鑲嵌於由醣蛋白組成的膠質結構。同時,單細胞具有朝外的兩條游動鞭毛及感光用的眼點。

以光學顯微鏡觀察採集自田寮洋的團藻(Volvox carteri f. nagariensis)之無性球體。G: 無性生殖細胞 (gonidia)。圖片擷取自日本東京大學生物科學系野崎久義教授與中研院生物多樣性研究中心副研究員江殷儒博士合作,甫被接受的論文(1) (江殷儒提供)。

團藻(Volvox spp.)的拉丁字義為「滾動」,顧名思義,放大鏡下的團藻會以優雅的姿態,緩緩地向光照處滾動(影片如下)。這需要令人驚異的協調性。因此,看各自獨立的單細胞,彼此需透過相連的原生質聯絡絲進行緊密的溝通協調。

https://www.youtube.com/watch?time_continue=11&v=nzO-ZSsqc9U

在演化研究上,團藻是相當重要的研究材料。因為團藻可能是單細胞真核生物過渡到多細胞生物的早期生命形式,也是有性生殖發生的起源。日本東京大學生物科學系的野崎久義教授在團藻演化上就有傑出的研究貢獻。

但如果你嘗試連續地培養團藻,難度其實很高,就像企圖強留夏日花火;最後你會在秋天前的某一日發現團藻的藻體萎縮崩潰。

團藻的生活史。本圖修改自 Nishii 與 Miller 論文之圖二(2)。

藻類往往具有非常複雜的生活史,團藻就是如此。我們肉眼見到的球形群體,其實只是其生活史的一個片段。

在合適的水質條件下,團藻傾向進行無性生殖。群體內少數體型較大的生殖細胞會持續分裂,進而發展成子群體,隨後掉入空腔內。當母群體老化破裂後,子群體們即會釋出到環境中。溫度的劇烈變動及乾燥等理化條件,會促成團藻細胞產生費洛蒙,誘導團藻進入有性生殖,結果便是產生厚壁的休眠孢子,隨後沉入田土中,等待另一個夏天。

這樣的生活史,與水稻田的季節作息相呼應,彷彿團藻是上帝擔憂水稻太過孤單而創造的玩伴。當你漫步於夏日的田寮洋,除了利用望遠鏡觀察遠處的水鳥,不妨彎下腰,拿起放大鏡,仔細觀察田水中的寂靜角落,或許你也能發現那美麗炫目的團藻。

參考文獻

  1. Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O, Matsuzaki R, Kawachi M, Chiang YR, Wu JT. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Bot Stud. 2018 Apr 3;59(1):10.
  2. Nishii I, Miller SM. Volvox: simple steps to developmental complexity? Curr Opin Plant Biol. 2010 Dec;13(6):646-53.

本文轉載自MiTalkzine,原文《初夏田寮洋的團藻

歡迎訂閱 微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG