Feinberg M, Willer R, Stellar J, Keltner D. The virtues of gossip: reputational information sharing as prosocial behavior. J Pers Soc Psychol. 2012 May;102(5):1015-30. doi: 10.1037/a0026650. Epub 2012 Jan 9. http://www.ncbi.nlm.nih.gov/pubmed/22229458
而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。
這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。
NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技
其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。
從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。
這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。
間接互惠(indirect reciprocity)的概念認為,受益者並不是直接回報給同一位利他的施恩者,而是會把恩惠轉給其他人。A 幫助 B,B 再幫助 C,C 再幫助 D,依此類推。於是,恩惠就能在社群裡傳出去,遲早也能回到 A 身上。種下的因,總有一天能得到最後的果。
而且這還能談到下一個層次:如果有個 Z,在 A 幫助 B 時,親眼見證了這件事,發現 A 是個慷慨的好人,他也會因為想和 A 建立關係,所以願意幫助 A。於是,就算這兩個人無法符合直接互惠所需要的「後會有期」條件,也能因為整個群體的利他行為而受益。樂於助人,自己就更可能得到幫助,至於那些不想幫助別人、只想貪小便宜的人,則是可能遭到懲罰或受到排擠。像這樣的間接互惠,是人類一種格外複雜的合作形式,需要兩項其他動物都辦不到的條件。
英文有句諺語說「騙子發不了財」(cheats never prosper),但不能說完全正確:騙子常常在短時間內還是能得逞,特別是在那些規模比較大、大家彼此比較不認識的社群;只是遲早仍然會東窗事發,讓自己名聲掃地。所以,想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件,而且無論是營火旁、或是茶水間,人類實在是哪裡都能聊。事實上,相較於其他靈長類動物是用理毛之類的活動來建立關係,人類是以閒嗑牙、聊八卦取代了這些活動。