作為奈米電子生物探測元件,探針的選擇相當重要。哈佛大學的研究人員選用奈米場效電晶體( nano field effect transistor, nanoFET)作為偵測探針。雖然針頭的尺寸可以非常小,但最大的缺點便是無法做三維度的量測,因為傳統的FET都是二維的。
哈佛大學Charles M. Lieber所領導的研究小組,在幾年前即成功在成長矽奈米線過程中選擇一段摻入雜質,來製作nanoFET[1]。接著他們控制矽奈米線,使矽奈米線長成各式順向或異向扭結(cis or trans kinks)的結構,並且在結構中同時成長nanoFET[2]。現在,他們刻意將矽奈米線成長為雙順向扭結(doubly cis-linked kinks)的結構,形成一個60度角的尖銳探針,並將含有nanoFET的一段長在探針前端,最後再利用電子束微影製程技術在矽奈米線兩端鍍上兩條金屬電極(Cr/Pd/Cr),然後一起與基板脫離,利用Pd/Cr金屬電極本身的內應力,使得整個矽奈米線探針結構往上翹起[3]。翹起的高度可以透過改變金屬電極的長度來控制,大約數十微米(10^-6米),差不多就是一個細胞的大小。 初步實驗顯示,這個翹起的三維結構與正常的平面二維結構具有相同的偵測靈敏度,約是4~8 μS/V。翹起的高度在±10微米的範圍內,電導的改變小於20 nS,約在0.31%整體元件電導的變動之內。此三維結構也有相當好的pH靈敏度~58 mV/pH,目前最佳的記錄是可以解析0.02 pH的變化。
作為奈米電子生物探測元件,探針的選擇相當重要。哈佛大學的研究人員選用奈米場效電晶體( nano field effect transistor, nanoFET)作為偵測探針。雖然針頭的尺寸可以非常小,但最大的缺點便是無法做三維度的量測,因為傳統的FET都是二維的。
哈佛大學Charles M. Lieber所領導的研究小組,在幾年前即成功在成長矽奈米線過程中選擇一段摻入雜質,來製作nanoFET[1]。接著他們控制矽奈米線,使矽奈米線長成各式順向或異向扭結(cis or trans kinks)的結構,並且在結構中同時成長nanoFET[2]。現在,他們刻意將矽奈米線成長為雙順向扭結(doubly cis-linked kinks)的結構,形成一個60度角的尖銳探針,並將含有nanoFET的一段長在探針前端,最後再利用電子束微影製程技術在矽奈米線兩端鍍上兩條金屬電極(Cr/Pd/Cr),然後一起與基板脫離,利用Pd/Cr金屬電極本身的內應力,使得整個矽奈米線探針結構往上翹起[3]。翹起的高度可以透過改變金屬電極的長度來控制,大約數十微米(10^-6米),差不多就是一個細胞的大小。 初步實驗顯示,這個翹起的三維結構與正常的平面二維結構具有相同的偵測靈敏度,約是4~8 μS/V。翹起的高度在±10微米的範圍內,電導的改變小於20 nS,約在0.31%整體元件電導的變動之內。此三維結構也有相當好的pH靈敏度~58 mV/pH,目前最佳的記錄是可以解析0.02 pH的變化。