美國National Center for Atmospheric Research (NCAR) 與University of Colorado at Boulder (CU)研究人員研發了上述稱之為智慧型異常偵測運算法(Intelligent Outlier Detection Algorithm. IODA) 的專利技術,論文發表於二月份的Journal of Atmospheric and Oceanic Technology。
但這還不夠,科學家總是能想到更奇葩的需求:未來,你的手機也有機會變身「大麻檢測器」了!羅格斯大學健康暨健康政策與高齡研究所(Rutgers Institute for Health, Health Care Policy and Aging Research)研究團隊,調查大麻使用者的「嗨度」,並將其與機器學習技術做結合,試圖打造能準確判斷大麻中毒程度的日常小工具。
註 1:該研究所使用的技術為「Light Gradient Boosting Machine」,是微軟公司以「決策數演算法」(decision tree algorithms)為基礎,於二〇一七年釋出 LightGBM 演算法,用於排序、分類和其它機器學習的任務。
參考文獻
Sang Won Bae et al. (2021) Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings. Drug and Alcohol Dependence.
Bae et al. (2018) Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addictive Behaviors
美國National Center for Atmospheric Research (NCAR) 與University of Colorado at Boulder (CU)研究人員研發了上述稱之為智慧型異常偵測運算法(Intelligent Outlier Detection Algorithm. IODA) 的專利技術,論文發表於二月份的Journal of Atmospheric and Oceanic Technology。
Freymuth, A. K., & Ronan, G. F. (2004). Modeling patient decision-making: the role of base-rate and anecdotal information. Journal of Clinical Psychology in Medical Settings, 11(3), 211-216.