0

0
0

文字

分享

0
0
0

訂作一個會微笑的 DNA

科景_96
・2011/02/10 ・1659字 ・閱讀時間約 3 分鐘 ・SR值 575 ・九年級
相關標籤:

Original publish date:Jun 09, 2006

編輯 Keelungman 報導

結合創意巧思與電腦程式的自動設計,訂作一個任意形狀的二維 DNA 奈米元件將不再是夢想。

來自加州理工學院的 Paul W. K. Rothemund,於 2006 年三月份的 nature 雜誌上發表一個重要的研究進展:現在我們可以利用相當簡 單的方法,將一段單股的長鍊 DNA 折疊成任意的二維形狀,甚至可以 在這個奈米器件上繪製任意的圖案。

http://www.dna.caltech.edu/~pwkr/i/twosmileys-topo-tilted2.jpg” border=”0″>

會微笑的 DNA (圖片來源 Paul W.K. Rothemund’s web site)

一般來說,DNA 以雙股螺旋的型態穩定存在。當 DNA 分離成單股的狀 態時,很容易發生同一條 DNA 上的鹼基彼此配對,糾結成一個複雜的 線團,這種型態通常被稱為二級結構。經過適當的設計,這種二級結 構可以再自我組織成特定的幾何結構,如 2004 年時一組美國的研究 團隊,成功地利用單股 DNA 合成出奈米八面體。但是這種設計的難度 相當高:鹼基序列必須只讓 DNA 的特定區域間彼此相接,卻又不能讓 這條 DNA 出現另一種組合方式;再者當特定的二級結構完成時,如何 誘導該結構拼湊成最終的形狀,這些都是亟待挑戰的課題。

這位加州理工的科學家提出了一個絕妙的點子:既然我們希望這個 DNA 摺紙要固定成想要的形狀,那不妨釘個釘書針上去!這個訂書針 由寡聚核苷酸 (oligonucleotide) 製成,上面有幾段序列,可以跟單 股 DNA 上不同位置的序列對應,如此便可將 DNA 上不同的位置經由 這個釘書針釘在一起。而且這種釘書針有個特異功能,如果單股 DNA 自己已先折疊成我們所不期待的二級結構,它可以鑽進去把這個結構 解開!這種寡聚核苷酸長度短容易定做 (一般約 32 個鹼基),但它可 容許的編碼尺度足以標定複雜的平面結構。

他構思一種可以任意訂作的二維 DNA 奈米元件:首先設計一個想要的 二維形狀,然後拉一條線在圖案內來回填滿這個圖形,此時要考慮每 條線的寬度與長度必須能配合雙股 DNA 的尺寸單位,設計完成後這條 線可以視為該圖案的骨架。下面的步驟交給電腦程式規劃,程式會自 動標定出適合安插釘書針的位置,讓寡聚核苷酸序列穿過許多縫隙 處,使最終產生出來的 DNA 圖案不致於鬆散不成形。如果這條用來當 骨架的單股 DNA 是已知的序列,那麼程式也會設計出所有需要的寡聚 核苷酸序列。

-----廣告,請繼續往下閱讀-----

他利用 M13mp18 genomic DNA 來示範他的點子。該 DNA 經小幅度剪 裁後可摺疊 100 層,需要約 200 到 250 支寡聚核苷酸釘書針。他測 試過正方形、長方形、星形、空心的三角形,以及一個可愛的笑臉圖 案。將單股 DNA 與訂製的寡聚核苷酸泡在一起,兩個小時內逐步將溫 度由攝氏 95 度降到攝氏 20 度,最後將樣品滴在雲母基板上由 AFM 掃描影像。結果顯示他的製程可以成功地將 DNA 折疊成所設計的圖 案,這位科學家並宣稱他的方法有著相當高的產率與良率。

經由適當設計,我們可以在這種釘書針上增加一段序列,該序列會自 我組合成一個啞鈴狀的二級結構,當 DNA 二維圖形完成後,可以從 AFM 掃描影像分辨出來。由於特定的釘書針只在圖形上的特定位置出 現,所以可以利用這種方法在 DNA 二維圖形上畫出想要的圖案。整段 DNA 圖形約可容納 200 根釘書針,也就表示該圖案可以擁有 200 個畫素。在實驗中科學家示範了在 200 奈米大小的 DNA 畫布上繪製 出美洲地圖。另外,在寡聚核苷酸上還可以增加一段未配對的鹼基序 列,當單股的 DNA 圖形組合完畢後,這些未配對的段落將會導引整張 DNA 圖案與其他的未配對序列互相連接,如此可將不同塊 DNA 零件兜 出更大的奈米器件。

這位科學家相信,這次所開發的方法將有無窮的發展潛力。這套 DNA 摺紙術應該可以直接應用到建構三維的奈米結構,而且只要有不具週 期性的百萬鹼基單股 DNA,這套方法應該可以直接製造出微米尺度的元件。

參考來源:

相關連結:

本文版權聲明與轉載授權資訊:

  • [Sep 02, 2004] 強勁的分子發動機—RNA奈米馬達(nano-motor)
  • [Jan 03, 2003] 生物+電子﹕碳奈米管來牽線
  • [Mar 05, 2002] 奈米技術進程-DNA機械操作改良
  • [Aug 18, 2000] 一種夾子—-DNA馬達的出現

    -----廣告,請繼續往下閱讀-----
  • 文章難易度
    科景_96
    426 篇文章 ・ 7 位粉絲
    Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

    0

    2
    0

    文字

    分享

    0
    2
    0
    人體吸收新突破:SEDDS 的魔力
    鳥苷三磷酸 (PanSci Promo)_96
    ・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

    -----廣告,請繼續往下閱讀-----

    本文由 紐崔萊 委託,泛科學企劃執行。 

    營養品的吸收率如何?

    藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

    你吃下去的營養品,可以有效地被吸收嗎?圖/envato

    當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

    首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

    -----廣告,請繼續往下閱讀-----

    你有聽過「藥物遞送系統」嗎?

    為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

    自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

    還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

    除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

    隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

    -----廣告,請繼續往下閱讀-----
    文章難易度

    討論功能關閉中。

    鳥苷三磷酸 (PanSci Promo)_96
    199 篇文章 ・ 304 位粉絲
    充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

    0

    0
    0

    文字

    分享

    0
    0
    0
    為期刊拍張封面 顯微鏡下的科學魔法
    顯微觀點_96
    ・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

    -----廣告,請繼續往下閱讀-----

    本文轉載自顯微觀點

    希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

    「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

    史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

    希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

    最驕傲的時刻——影像獲選期刊封面

    希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

    -----廣告,請繼續往下閱讀-----

    事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

    「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

    希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

    歷經徬徨 受科學魔法吸引踏上研究路

    對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

    -----廣告,請繼續往下閱讀-----

    原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

    直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

    在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

    而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

    -----廣告,請繼續往下閱讀-----

    曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

    Science Trans 1
    圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

    超敏通道

    圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

    希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

    本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

    拍科學藝術照 封面也可以很抽象

    對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

    此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

    希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

    -----廣告,請繼續往下閱讀-----

    她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

    希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

    物種特異性表達

    以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

    痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

    希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

    本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

    Sciencetrans2022 1
    圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
    Jneurosci 3
    圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

    圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

    希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

    認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

    參考資料

    1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
    2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
    3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
    4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

    查看原始文章

    討論功能關閉中。

    顯微觀點_96
    6 篇文章 ・ 2 位粉絲
    從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

    0

    1
    0

    文字

    分享

    0
    1
    0
    「科學」能有價值觀嗎?堅持「客觀」反而讓民眾失去信任?——《為何信任科學》
    貓頭鷹出版社_96
    ・2024/05/26 ・3357字 ・閱讀時間約 6 分鐘

    -----廣告,請繼續往下閱讀-----

    科學這門事業並非價值中立,個別科學家也不是。沒有任何人可以真正做到價值中立,當科學家這樣講自己,人們會覺得他們虛偽,因為那是不可能的。除非他們是白痴學者或超級天真,不然就是不誠實。然而誠實、開放和透明又被認為是科學研究的核心價值。科學家怎麼可能同時做到誠實,又說他們沒有自己的價值觀?如果科學家要堅守誠信,同時卻讓大眾誤解他們的角色(就算不是故意的),這會讓他們的事業出現根本的矛盾。

    可能有人會反駁,科學家並不是說他們沒有自己的價值觀,只是不會允許這些價值觀影響到科學工作。這種論述不可能證明對或錯,但社會科學研究和一般常識都顯示這不太可能。這就把我們帶到下一個問題,不知為何長久以來都沒有人認真討論一件事,但它卻是許多美國人不信任科學的核心因素:要說科學是價值中立的,多少是在說它沒有價值,至少除了創造知識以外沒有其他價值,而這很容易就變成在說科學家沒有價值信念。當然不是這樣,但如果科學家不願意討論他們的價值觀,就會給人一種印象,認為他們的價值觀有問題,所以才需要遮遮掩掩,或認為他們根本就沒有價值信念。你會相信一個沒有價值信念的人嗎?

    我在第二章提出了一個問題:忽視科學主張但最終發現它是對的,風險是什麼?相比之下,相信一個錯誤的科學主張,風險又是什麼?回答這個問題必須仰賴價值。我和康威合著的《販賣懷疑的人》提到,氣候科學所引起的爭辯,幾乎都是價值上的爭辯。很多有影響力的人物在一九八○和一九九○年代相信,政府干預市場的政治風險是如此之大,超越了氣候變遷的風險,因此他們懷疑、蔑視,甚至否認後者的科學證據。這些立場由自由主義智庫繼承,得到共和黨支持,演變成共和黨支持者很多都否認氣候變遷,只是有些積極、有些消極;然後再演變成很多質疑「大政府」的人都懷疑氣候變遷,包括商人、長者、福音派基督徒、住在美國鄉下的人。

    即使氣候變遷的證據不斷累積,懷疑論者還是堅稱,就算氣候真的有在變遷,情況也不會太嚴重,或者不是「我們造成的」。因為如果事情真的很嚴重而且是我們造成的,那我們就應該採取行動,可能需要政府以某種方式管制。如此一來,否認氣候變遷逐漸變成美式生活的常態,先是否認證據,最終否認事實。這個問題非常嚴重,但是對於氣候變遷否認者秉持的價值,不能一網打盡說是錯的。

    -----廣告,請繼續往下閱讀-----
    共和黨支持者很多都否認氣候變遷。圖/giphy

    我們可以討論大政府和小政府的優缺、市場管制不足或過度管制的風險,但任何這類討論都(至少在某種程度上)是從價值出發。如果要開誠布公討論這個話題,就必須討論我們的價值觀。不同的人面對同樣的風險,可能有不同的想法,不代表他們就是愚笨或腐敗。人為氣候變遷的科學證據很清楚,疫苗不會導致自閉症很清楚,使用牙線有益健康也很清楚。但價值觀導致許多人拒絕接受證據指出的事情。

    回到剛才的問題:你會相信一個沒有價值信念的人嗎?答案當然是不會,這種人是反社會人格。你也不會相信那些擁抱你所厭惡的價值的人。但如果你認為,某個人的價值觀起碼部分與你相似,就算不盡相同,你可能就比較願意聽聽他的想法,接受他說法的一部分。因此,無論價值中立是否能讓一個主張在知識論上比較站得住腳,可以確定的是它在現實中沒有用,不能以此確保溝通、建立信任的連結

    科學寫作的主流寫法不只試圖隱藏作者的價值觀,也把他們的人性一同抹煞了。價值觀隱藏、情緒不得伸張、避免使用形容詞,甚至連「我」這個字都無形中禁止了,即便論文只有單一作者也一樣。理想的科學論文寫得好像作者沒有價值觀或感覺,甚至好像作者根本不是人,這都是為了表現出客觀。

    圖/envato

    科學家可能覺得根本沒辦法讓否認氣候變遷和相信地球年紀是 6000 年的人相信他們。或許這是真的。我曾經公開表示對於要如何跟千禧世代交流感到非常絕望,他們之中有些人聽信末世論,認為世界就要毀滅了,幹麻還擔心氣候變遷?但當我陷入絕望,隔天幾位記者就告訴我怎樣才能透過基督教價值和教導打動這些人。他們建議我從價值觀下手,社會科學研究也支持這種想法。

    -----廣告,請繼續往下閱讀-----

    結論

    科學家壓抑自己的價值觀,堅持科學是價值中立的,這是一條歧路。他們認為人們如果相信科學沒有價值觀,就會相信他們,但這是錯的。

    墨頓顯然這樣想,但他可能是錯的,或許反過來才是對的。原因如下:

    政治與社會觀念保守的基督徒、自由主義者、共和黨人拒絕相信演化論和人為氣候變遷,大部分分析都聚焦在科學家與這些人之間的價值衝突。但我相信,驅動大多數科學家的價值觀,還是和大多數美國人的價值觀有重疊之處,包括多數的保守派和宗教信徒。近來有一些科學家開始公開聲明他們的價值觀,我認為部分原因是,他們深信這些價值觀確實得到廣泛接納,可以作為信任連結的基礎。 我認為他們是對的。

    我認識的大部分科學家都想要預防疾病、促進人類健康、透過創新和發現來強化經濟、保護美國與全世界美麗的大自然。前共和黨議員殷格利斯講得很有說服力,他談到他和海洋生物學家一同造訪大堡礁,他們肩並肩站著,欣賞珊瑚礁周邊生物撼人的美麗。殷格利斯了解到一件事:他看到「創造」,科學家看到「生物多樣性」,但他們實際上看到的、在意的、珍惜的,是同一件事。

    -----廣告,請繼續往下閱讀-----

    我好喜歡這個故事,因為多數人至少都在某方面珍愛自然。不同背景的美國人都曾造訪國家公園和森林,去健行、釣魚、露營、開車、攝影、漫遊、抱怨,雖然從事不同活動,但美景與體驗帶來了共同的喜悅。儘管如此,我們對人類與自然世界的關係,確實有不一樣的想法。有些人想要在冬日的黃石公園騎雪上摩托車,有些人想要安靜休養。幾乎所有美國人都說他們相信自由,然而我們對這個詞的理解卻嚴重分歧,也很難同意該把哪一類自由看得最重要。柏林有句名言:狼的自由可能代表羊的死亡。同意「自由」這個詞意義並不大。

    宗教歷史學家普羅特勞指出,猶太人、天主教徒和新教教徒都相信十誡,但是版本差距之大,令人吃驚。例如天主教放棄了不可崇拜偶像,而猶太教與新教徒堅守此道。天主教因此少了一條戒律,只剩九條很奇怪,於是他們把最後一條一分為二,變成第九條是不可貪圖鄰人之妻,第十條是不可貪圖其他東西。儘管如此,美國人中超過 70% 都信奉這三個宗教,他們都還是認同不可殺人、偷竊、通姦或做偽證,也相信我們應該崇拜唯一真神、不可妄稱神的名、守安息日、孝敬父母。伊斯蘭教也同意這些,只是比這三個宗教更加強調慈善:課(zakat),也就是施捨,是五大支柱之一。不過,看看 zakat 這個字和希伯來文中的 tzedakah 多麼相似,tzedakah 代表慈善施予,是猶太生活的道德義務。慈善也是基督教的核心價值,虔誠的摩門教徒會繳納什一奉獻。

    在很多政治議題上我們意見相左,但我們的核心價值大部分都重疊。釐清這些我們都同意的部分,並解釋它們和科學研究的關聯,我們就有機會克服盛行的懷疑論與對科學的不信任,尤其是因價值受到衝擊而產生的不信任。

    We have been authorized by Princeton University Press to use this conten. 該內容由普林斯頓大學出版社授權使用

    ——本文摘自《為何信任科學:科學的歷史、哲學、政治與社會學觀點》,2024 年 04 月,貓頭鷹出版,未經同意請勿轉載。

    -----廣告,請繼續往下閱讀-----

    討論功能關閉中。

    貓頭鷹出版社_96
    65 篇文章 ・ 26 位粉絲
    貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。