0

0
0

文字

分享

0
0
0

樹木生長的最高極限?

科景_96
・2011/02/09 ・981字 ・閱讀時間約 2 分鐘 ・SR值 505 ・六年級
相關標籤:

Original publish date:May 02, 2004

編輯 Wei-Chiao Chang 報導

廣告詞中小孩子天真無邪地說:「我要長的像大樹一樣。」究竟大樹能夠長多高?是一個有趣但難以回答的問題。最新一期《自然》期刊的一篇研究指出:樹木生長的最高極限約為122-130公尺之間。

樹木的生長明顯地會受到土壤品質、氣候變遷與大氣的變化所影響,例如:溫度、溼度、大氣中二氧化碳、臭氧等,都是造成樹木茂盛與否的因素。

從前的科學家認為:在沒有外力介入或機械性傷害下,樹木最高應該可以長到120公尺左右,至少,在歷史上曾經出現過高達120公尺的大樹。不過,現今科學家再次檢視此一問題時,他/她們將焦點放在樹木生長的高度與其水分運送、光合作用執行的相關性上。因為科學家們認為:樹木生長的越高,水運的輸送將更為困難,而末梢樹葉的光合作用也會受到阻礙,在這種情況下,樹木將無法繼續長高。

為了尋找這個問題的答案,美國科學家George Koch 與其研究團隊曾經前往加州北部的紅杉(redwoods, Sequoia sempervirens )森林區,並且爬上當今世界上最高的五棵樹,包含目前地球上已知最高的一棵樹木(112.7公尺),以便觀察這些樹木的生理機能。

George Koch教授與其研究團隊在檢視這些樹木的葉片組織結構、光合作用能力、與二氧化碳濃度後發現:在樹木頂端的葉片反應著嚴重的缺水徵狀,就如同這些樹木是生長在沙漠一般。畢竟,樹木將水份從根部、經木質部(xylem)再運送至葉子時,必須克服重力與導管內摩擦力障礙,所以要將水分從土壤中攜帶到一百多公尺高的樹葉,確實相當艱辛,而水分的輸送不易也最直接地影響樹木的生長。因此,George Koch教授認為:這些近兩千歲高齡的樹木雖然目前仍維持著每年0.25公尺的生長速度,但它們想多長高15公尺,還是相當困難。

是否曾經悠閒地在翠綠壯觀的大樹面前駐足欣賞?是否曾經浪漫地在枝葉茂盛的樹蔭底下乘風納涼?屹立於成功大學校園的那棵百年榕樹了,相信會是享受【樹大便是美】的很好選擇。

原始文獻:The limits to tree height. Nature 428:851 (2004)

參考來源:

相關連結:

本文版權聲明與轉載授權資訊:

  • [Jan 13, 2006] 古老的雨林
  • [Mar 11, 2004] 不再原始的原始森林
  • [Feb 16, 2004] 淌血的婆羅洲雨林
  • [Apr 29, 2003] 熱帶雨林讓全球升溫變本加厲?!

  • 文章難易度
    科景_96
    426 篇文章 ・ 7 位粉絲
    Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

    0

    0
    0

    文字

    分享

    0
    0
    0
    Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
    鳥苷三磷酸 (PanSci Promo)_96
    ・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

    本文由 Intel 委託,泛科學企劃執行。 

    在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

    先進製程:效能飛躍提升

    現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

    其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

    -----廣告,請繼續往下閱讀-----

    另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

    而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

    圖/PanSci

    Tile 架構:釋放多核心潛能

    在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

    CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

    -----廣告,請繼續往下閱讀-----
    鰭式電晶體 FinFET。圖/Intel

    Foveros 3D 封裝技術:高效數據傳輸

    2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

    圖/Intel

    而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

    運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

    除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

    MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

    -----廣告,請繼續往下閱讀-----

    除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

    Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

    軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

    此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

    -----廣告,請繼續往下閱讀-----
    文章難易度

    討論功能關閉中。

    鳥苷三磷酸 (PanSci Promo)_96
    199 篇文章 ・ 305 位粉絲
    充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

    0

    0
    0

    文字

    分享

    0
    0
    0
    流感合併肺炎鏈球菌感染恐致命?如何預防?肺炎鏈球菌疫苗接種方式介紹!
    careonline_96
    ・2024/06/14 ・2739字 ・閱讀時間約 5 分鐘

    -----廣告,請繼續往下閱讀-----

    「千萬不可小看肺炎鏈球菌!歷史及醫學文獻上告訴我們,即使青壯年感染流行性感冒,合併肺炎鏈球菌感染,可能病程進展快速,短短 48 小時就過世,相當可怕!」台大醫院內科部感染科教授兼科主任陳宜君醫師指出,「如果肺炎鏈球菌由上呼吸道黏膜進入血液,可能侵襲各個器官,演變為侵襲性肺炎鏈球菌感染症。患者的狀況可能兵敗如山倒,而住進加護病房;可能因而器官衰竭,如肝腎功能受損,嚴重甚至導致洗腎。這些情況都讓家屬很難過、無法接受。」

    侵襲性肺炎鏈球菌感染症確診數,在 2023 年底有明顯上升的趨勢,且感染案例數創三年新高1,民眾務必提高警覺。根據疾病管制署的統計,侵襲性肺炎鏈球菌感染症患者中,65 歲以上民眾佔了 44.5 %2。陳宜君醫師提醒,換言之有 55.5 % 是 65 歲以下民眾,比例超過一半。肺炎鏈球菌對各個年齡層都有影響,所以不是只有老年人,各年齡層都要注意。

    不可輕忽!肺炎鏈球菌潛伏體內,流感合併肺鏈重症高四倍!

    除了 5 歲以下嬰幼兒、65 歲以上老年人之外,還有許多族群屬於侵襲性肺炎鏈球菌感染症的高危險族群,包括慢性病患(如慢性腎病變、慢性心臟疾病、慢性肺臟病、糖尿病、慢性肝病、肝硬化患者)、酒癮者、菸癮者、脾臟功能缺損或脾臟切除、先天或後天免疫功能不全、人工耳植入者、腦脊髓液滲漏者、接受免疫抑制劑或放射治療的惡性腫瘤者或器官移植者3

    此外,原本健康民眾在感染流行性感冒、新冠肺炎等病毒後,呼吸道黏膜免疫會受到影響,續發性細菌感染的機會上升。陳宜君醫師說,台大醫院兒科團隊發表過一個很重要的研究,發現單純得到流感的患童約有 5 % 會住加護病房,而流感合併肺鏈的患童約有 20 % 會住加護病房4,顯示流感合併肺鏈比一般流感的重症風險高出四倍之多。

    -----廣告,請繼續往下閱讀-----

    肺炎鏈球菌主要存在鼻腔黏膜,當免疫力正常時不會產生問題,但當黏膜免疫力下降時,便可能侵入組織,造成中耳炎、鼻竇炎、肺炎等感染;而免疫力低下患者,便可能發展成重症。陳宜君醫師說,患者會出現發燒、咳嗽、氣喘、噁心、胸痛、頭痛、呼吸急促等症狀,可能進展為肺炎、腦膜炎、關節炎、骨髓炎、心包膜炎、溶血性尿毒症、腹膜炎、敗血症等,危及性命5

    接種肺炎鏈球菌疫苗,預防勝於治療

    面對肺炎鏈球菌感染,預防永遠勝於治療!陳宜君醫師說,肺炎鏈球菌經由飛沫散播,所以可以透過戴口罩、勤洗手、避開擁擠密閉的空間,更積極的做法就是接種肺炎鏈球菌疫苗。

    肺炎鏈球菌可分為 92 種以上血清型,其中約有 30 種血清型會造成人類的感染,所以會針對較常見的血清型製作肺炎鏈球菌疫苗6。目前台灣有結合型疫苗(PCV)與多醣體疫苗(PPV)。

    多醣體疫苗(PPV),通常不具備長期免疫記憶。陳宜君醫師解釋,結合型疫苗(PCV)可以誘發 T 細胞免疫,有助產生免疫記憶,提供較長時間的保護力7

    -----廣告,請繼續往下閱讀-----

    研究顯示,接種一劑結合型疫苗(PCV)後,再接種一劑多醣體疫苗(PPV),有助提升免疫記憶,提供較長時間的保護力,並使保護範圍更廣,能有效降低感染肺炎鏈球菌導致嚴重併發症或死亡的風險8。因此,疾病管制署針對 65 歲以上民眾提供公費疫苗政策:接種 1 劑 13 價結合型肺炎鏈球菌疫苗(PCV13)及 1 劑 23 價肺炎鏈球菌多醣體疫苗(PPV23),以保護年長者免於重症威脅9

    不過,一般年輕族群亦不可輕忽。陳宜君醫師提到,因為肺炎鏈球菌疫苗是準備讓健康民眾施打,所以在研發疫苗時,對安全的要求非常高。結合型疫苗(PCV)與多醣體疫苗(PPV)皆為不活化疫苗,免疫不全者皆可接種,且能夠與流感疫苗同時接種。國際建議在左手臂接種流感疫苗,在右手臂接種肺炎鏈球菌疫苗。

    關於肺炎鏈球菌疫苗的接種方式,疾病管制署建議:

    • 從未接種肺炎鏈球菌疫苗的民眾,可先接種 1 劑結合型疫苗(PCV),間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可先接種 1 劑結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
    • 曾接種過 1 劑結合型疫苗(PCV)的民眾,可於間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可於接種結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
    • 曾接種過多醣體疫苗(PPV)的民眾,可於間隔至少 1 年後再接種 1 劑結合型疫苗(PCV)10

    「肺炎鏈球菌感染不只造成肺炎!」陳宜君醫師叮嚀,「狀況許可時,建議及早接種疫苗,做好預防措施,才能保護自己、保護身邊的人。」

    註解

    1. 衛生福利部疾病管制署 65 歲以上公費肺炎鏈球菌疫苗三階段開打,呼籲長者接種(access date 2024/3/8)
      https://www.cdc.gov.tw/Bulletin/Detail/hr4M-Qmi3Fu2KPC3En2a6Q?typeid=9 ↩︎
    2. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine)(accessed date 2023/12/15)
      https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
    3. Hsing, T. Y., Lu, C. Y., Chang, L. Y., Liu, Y. C., Lin, H. C., Chen, L. L., Liu, Y. C., Yen, T. Y., Chen, J. M., Lee, P. I., Huang, L. M., & Lai, F. P. (2022). Clinical characteristics of influenza with or without Streptococcus pneumoniae co-infection in children. Journal of the Formosan Medical Association = Taiwan yi zhi121(5), 950–957. https://doi.org/10.1016/j.jfma.2021.07.012 ↩︎
    4. 衛生福利部疾病管制署 侵襲性肺炎鏈球菌感染症(accessed date 2024/03/08)
      https://www.cdc.gov.tw/Disease/SubIndex/oAznsrFTsYK-p12_juf0kw
      ↩︎
    5. 衛生福利部疾病管制署  侵襲性肺炎鏈球菌感染症 疾病介紹(accessed date 2024/03/08)
      https://www.cdc.gov.tw/Category/Page/MEYvHLbHiWOcLfQKKF6dpw
      ↩︎
    6. Pollard, A. J., Perrett, K. P., & Beverley, P. C. (2009). Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nature reviews. Immunology9(3), 213–220. https://doi.org/10.1038/nri2494 ↩︎
    7. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP) (cdc.gov) (accessed date 2023/12/15) https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6434a4.htm ↩︎
    8. 衛生福利部疾病管制署 為提升民眾免疫保護力,10月2日起分三階段擴大65歲以上民眾公費接種肺炎鏈球菌疫苗(accessed date 2024/03/08) https://www.cdc.gov.tw/Bulletin/Detail/q9_r5mAOvcpIPSUvrjGFpw?typeid=9 ↩︎
    9. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)
      https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
    10. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎

    本衛教文章由台灣輝瑞協助刊登(PP-PRV-TWN-0166-202404)

    -----廣告,請繼續往下閱讀-----
    careonline_96
    470 篇文章 ・ 273 位粉絲
    台灣最大醫療入口網站

    0

    0
    1

    文字

    分享

    0
    0
    1
    電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
    數感實驗室_96
    ・2024/06/13 ・671字 ・閱讀時間約 1 分鐘

    -----廣告,請繼續往下閱讀-----

    本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

    先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

    無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

    電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

    -----廣告,請繼續往下閱讀-----

    希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

    更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

    參考資料

    討論功能關閉中。

    數感實驗室_96
    69 篇文章 ・ 45 位粉絲
    數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/