0

0
0

文字

分享

0
0
0

海底黑煙囪的聯想之二

timd_huang
・2011/06/27 ・5733字 ・閱讀時間約 11 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

在2009年4月21日,我寫了ㄧ篇〈海底黑煙囪的聯想〉(PanSci站內連結),原本以為,這只不過是我諸多科普探索的有趣課題之一,寫完以後,就會將之宿諸高閣;沒想到,它竟然像個「魔神仔黏到身」,兩年多以來,一直纏繞在我的思考黑暗角落,也就是催眠業界那些沒搞清楚催眠到底是啥麼碗糕者所謂的「潛意識」當中,三不五時,還從腦袋後面搓我一下;一直到大約半個月之前,這個海底黑煙囪的念頭,又從深海太陽光照射不到的黑暗處,冒泡到寧靜的腦海面,甚至引發成為一個海嘯。

圖一 我的六十大壽最特別,到了這個世界目前唯一發現的埃迪卡拉紀實體化石點,我手指所指的,就是滿地皆是的管狀體古生物化石,前面也有一個,塑膠袋內所裝的,也都是這種管狀體化石。

我這些年來搞世界上首次所發現的那些埃迪卡拉紀實體化石(Body Fossil),一直有一個很大的困擾:從手裡有的樣本和化石點所觀察到的實況來說,這個化石點的古生物化石,基本上可以分成兩大類,(一)管狀體(Tubular Creatures),和(二)葉片體(Frond Creatures),如我命名的黃楊清蓮體(Chinglian huangyoung);當然還有好幾種其它的生物體,如朵西繩蟲(Funisia dorothea),和一些還沒有時間去深入探究的怪咖等等;不過,若以數量來說,斷裂的管狀體碎片最多(圖一圖二),滿地都是,走路很難不踩到,葉片體碎片較少,需要彎腰仔細看一下,其它的生物體,通常還埋在圍岩裡面(圖三),需要回家清理之後才看得見。

圖二 靠近一點拍攝地面,哇塞,到處都是管狀體的碎片,數量無法算數;注意看中央那個從一點幅射成三角形的,好像稻苗。
圖三 這塊帶有圍岩的樣本上,有好幾種不同的古生物,上方有半個像台灣民間「紅龜稞」的古生物,朝向右方略上的,像是剝下來的高麗菜葉片,中央和其餘大部份,是折斷的管狀體古生物,和一些不知道是啥米碗糕的東東。

這些滿地皆是的管狀體,大部份在地表面的,都是已經裂開的半圓碎片,從1~2公分到5~6公分不等;橫向圓管還完整、但不是縱向整個生物體的化石,數量相對少一些,但是還夾在圍岩裡面的,通常比較會有完整較長的管子,直徑從大約1公分到6公分,長度可達1 ~ 20公分,目前採集到最大的一根,長度18公分,直徑6公分,算是我所有管狀體中最大「ㄎㄧㄢ」的,如圖四所示。

圖四 左邊這一根,是目前採集到最大的一根管狀體,長度18公分,管狀體的直徑6公分,管壁厚度0.5公分;左邊這一塊帶著圍岩的樣本,中央那根最大的,直徑2公分,長度14公分,旁邊有好多直徑大小不等的管狀體,似乎也像稻苗那樣子,從一個點幅射開來;這個樣本的背面,主要的也都是直向裂開的管狀體,當然也有一些其它的古生物。

圖五   這是數位化三維的兩根埃迪卡拉紀管狀體視訊短片,大的這根長度13.3公分,直徑3.7公分,細的這根,長度15公分,直徑1.9公分,小的這根之外表,就有很多小瘤,很有可能和粗的那根,不是同樣的生物種。

-----廣告,請繼續往下閱讀-----

如果從管狀體的外表型態來看,似乎不只有一種,而是好幾種,有一些是表面相對來說比較平滑,有一些的表面,卻有瘤狀突出(圖五);基本上它們都是直的斷碎片,罕見彎曲,若有彎曲,弧度也很小,猜測是在形成化石過程中被擠彎的;因為這些都是斷片,目前無法判斷整個管狀體原本的長度和型態。

即便管狀體的外表有不同,若從橫切面來看(圖六),管壁的厚度通常在1~ 5 公釐(mm)之間;若仔細看看管壁的橫切面,可以看到同心圓層狀的「年輪」,縱切面也有層狀結構;哼,這果真是這些生物的成長記錄?縱切面的光學顯微照片,更是可以明顯看出層狀結構(圖七圖八)。

圖六 一根直徑較小的管狀體橫切面近拍,可以看到管壁「年輪」狀的同心圓層,中央填滿了「泥巴」;請注意看,管壁最內一圈的紅棕色,中央「泥巴」裡面,也有幾個相同顏色的小區塊,這不會是偶然的吧?

圖七 這兩張照片,上面的是從網路搜索來的,為現生海底黑煙囪大管蟲Riftia pachyptila切面的照片,放大倍率為2000X;下面為我發現埃迪卡拉紀實體化石中管狀體的光學顯微照片;兩者非常類似,明確地顯示多層同心圓環,所以呢?會不會這些埃迪卡拉紀的管狀體古生物,類似於現生海底黑煙囪的大管蟲?
圖八 埃迪卡拉紀實體化石管狀體部份管壁橫切片,可以清楚看到「年輪」狀的同心圓層;圖七右邊為本照片之放大。

接著,再進一步放大來看這些埃迪卡拉紀管狀體古生物,這下子要動用到掃瞄式的電子顯微鏡(SEM, Scanning Electronic Microscope),感謝外甥女,當年在中央研究院工作的時候,「偷偷地」幫我掃了幾百張照片,本文無法一一列舉,就挑四張比較有趣的來看看,圖九到圖十二;這些照片的放大倍率,從800倍到10,000倍(和以上),整個管狀體的內部構造,都被看光光,無處隱藏。

圖九 埃迪卡拉紀管狀體實體化石,管壁內的「細胞」結構,形狀有些奇怪,中央似乎有「細胞核」明顯可見,但是外圍沒有厚厚的「細胞壁」,因此可將植物界排除,但它是動物嗎?不見得。

先從圖九來說,這是一張很有趣的照片,似乎有個明顯的「細胞」外型,中央的部份,好像有看到「細胞核」,但是在整個細胞結構外緣,沒有看到熟悉厚厚的植物細胞壁,這一點,似乎可以把此生物從植物界排除掉,但是,這能否因此就說它是動物界呢?答案是:不一定可以說它就是動物界的生物,因為埃迪卡拉紀的諸多生物群,很有可能是屬於一個或多個已經完全滅絕的生物界,既不屬於動物界,也非植物界,而是如「凡德生物界(Vendobionta)」;因此,這也引發了另一堆大問題,如果是已經滅絕的生物界,而且到現在為止,除了我發現的這些實體化石之外,世界其它各地的埃迪卡拉紀化石都只是鑄模化石,也就是灌模灌出來的,就如公仔那樣,不能拿來做大體解剖,無法深入內部,看看它們的細胞組織結構,也就是說,從來沒人看過埃迪卡拉紀生物的細胞結構,那麼有誰有足夠的經驗能判斷呢?

-----廣告,請繼續往下閱讀-----
圖十 埃迪卡拉紀管狀體實體化石,更大的放大倍率(很可惜,當時外甥做的時候,沒有把相關資料放進照片內),似乎可以看到「細胞」內的構件結構,如此的形態,應該不會是無機礦物的結晶,而是從生物體石化的結果。

圖十是一張更有趣、但很可惜沒有把相關資料記錄在一起的掃瞄電子顯微鏡照片,顯示出(可能)「細胞」內部的結構,我從很有限、還記得一點點高中生物學的知識來猜測,照片中央那陀圓圓有兩根細管伸出去到其它部位的東東,會不會就是「線粒體(Mitochrondrion)」?或是其它細胞內的構件呢?救命啊!救命。

圖十一 從埃迪卡拉紀管狀體實體化石管內壁看到這團東西,真是下了一大跳,這是啥米碗糕啊?如此的形狀和大小,都坐落在一般細胞的外型和尺寸範圍內,應該就是某種細胞吧?或者是某種古細菌?

圖十一,哼,這一團又是啥米碗糕?怎麼會長得這麼漂亮可愛?尺寸大小和形狀,都和一般細胞類似,可是它單獨一個,似乎靠在某種「牆壁」(右下角)上,它會是某種細胞?或是和管狀體共生的古細菌呢?還難以猜測。

圖十二 這是埃迪卡拉紀管狀體實體化石管壁內部表面的照片,最有趣的是中央那個倒Y的東東,好像肚子裡面的寄生蛔蟲,終端吸付到宿主肉內,倒底這是怎麼一回事情?會是與管狀體共生的其它生物嗎?

圖十二,這是從管狀體管壁的內側、也就是原本「泥巴」填充那面照到的,外甥女實際上拍到了好幾張類似這樣子的掃瞄電子顯微鏡照片,我只挑這張來做樣本;中央這根倒Y型的東東看起來,直覺上就想到肚子裡面的蛔蟲(寄生蟲),終端吸付在我們的腸子肌肉內,吸付我們身體的養份,它不就是如此嗎?這也就是說,如果管狀體除了(可能)有如圖十一的古細菌共生之外,也有更大型的「寄生蟲」參一咖,果若如此,到底這些大大小小不同生物群彼此之間的關係如何?相互利用?相互有利?我不知道該怎麼說。

目前,我們正在使用國家同步幅射的設備〈用大砲打小鳥〉(PanSci站內連結),進行相關的探索,很多細節還有待進一步的資料收集與分析,不過,從初期的福立業轉換紅外線光譜(FT-IR)數據來看,我這些埃迪卡拉紀的實體化石,在2500-2700cm-1出現了一些很奇怪的波峰,似乎屬於硫氫鍵(S-H Bond)的,整張光譜也和其它化石(如恐龍胚胎骨頭)殘留有機物的不同,意味著在這些埃迪卡拉紀實體化石內,還殘留著不同的有機物;如果不久的將來,我們可以透過這些先進的科學儀器,找出這些埃迪卡拉紀化石內,含有較多的硫化物,那麼,這也就意味著當年這些生物的生活環境,很有可能是類似於今日深海黑煙囪的環境。

-----廣告,請繼續往下閱讀-----
圖十三 地球氣候、大氣層含氧量、二氧化碳量與時間 橫軸為時間,縱軸為氣候、大氣含氧量、和大氣二氧化碳含量

如果以上的假設能成立,意味著一些很重大的含意,其中之一為:埃迪卡拉紀的生物,並沒有在埃迪卡拉/寒武紀交接的大滅絕中全部死光光,有些還活到今天,今日深海黑煙囪的大管蟲,就是那個時代存留活到當下的「活化石」證據;達爾文的進化學說與生命樹,或該有所修正。

不過,除了海底黑煙囪的假設之外,我可以想到的,還有另外一種可能;如果從我們整個地球歷史和生態環境的角度來思考,這些生活在大約6億年前的生物,它們的生存環境,和今日我們所熟悉、賴以為生的地球生態,大不相同;先來看圖十三的地球生態史。

這圖十三最下面這行是時間(Time)軸,最左邊是3.8億年前太古代(Archaean),最右邊是現在新生代(Caenozoic);往上這一行是氣候(Climate),中間有一條相對氣溫平均線,在此線之下表示地球處於冰期(Ice Age),地球南北極有冰覆蓋,氣溫較低於平均值,甚至整個地球都處於「冰雪地球(Snow Ball Earth)」,在此線之上,表示地球暖化期,地球溫度高於平均相對溫度,南北極沒有冰層覆蓋;順便提一下,整個中生代(Mesozoic)都處於地球暖化時期,恐龍生活在比現在更為炎熱的環境中,而我們目前的地球溫度,屬於冰期,南北極都有冰層覆蓋,並非地球暖化期。

再往上那行,表示地氣層中相對氧氣(O2)含量,請注意,在原生代(Proterozoic)之前,大氣層中的含氧量非常低,不到今日的0.1%,即便到了古生代(Palaeozoic)開始的時候,大氣層含氧量,也只有今日的10%左右,接著慢慢增加,一直到快進入中生代的時候,空氣中的氧氣,才達到現在的濃度,讓更多生物賴以為生。

-----廣告,請繼續往下閱讀-----

本圖最上面的這行,表示大氣層中的二氧化碳(CO2)相對濃度,若從左邊看過來,最早期的地球二氧化碳濃度是1,500%,慢慢減少到500%,然後在原生代兩次相鄰的大冰期期間,大氣中的二氧化碳濃度,在相對很短的期間內,大幅快速增加到大約1,800%,然後又慢慢下降,偶爾會稍微多一些,有時會少一些,終至大約100%的現在。

看了這張整個地球生態的關鍵因素(氣溫、大氣層含氧量、和大氣層二氧化碳含量變化)圖,應該會有個念頭跑出來:我們地球本來就有這些大自然的變化,目前地球正是處於冰期而非暖化期,南北極都被冰層覆蓋,大氣層中的氧氣和二氧化碳濃度,並沒有激烈的脫軌,因此不知道那些高喊地球暖化,甚至南北極都搞不清楚的台灣某過時政客還敢拍出〈±2oC〉紀錄片,這些人到底是真的瞭解地球生態而真心地想保護環境,或只是拿虛幻的數據來做政治鬥爭騙錢?當然,我在此並沒有說我們可以咨意破壞環境,或說不必減少對大氣與環境的汙染,只是點出地球生態環境,原本就有這些變化的自然規律,不容環保政客視而不見。

回到本題,在此圖上,大約在接近6億年前的地方,我畫了一條往上的藍色箭頭,這就是埃迪卡拉紀時候的地球生態環境:那時地球氣溫略低於平均值,大氣層中的氧氣大約只有今天的10%,因而,溶解在海水裡面的氧濃度也比較稀薄,而二氧化碳的濃度,是今天的1,400%左右;哼!這就很有趣了,埃迪卡拉紀的時候,整個生態環境比現在「惡劣」很多的多!而竟然會出現這麼多巨大而複雜的生命,太有趣了,想要探索它們出現的原由,太有挑戰性有夠刺激了!

又,有關地球生命起源有諸多學說(假設),其中有一派,說我們地球早年的海洋,是一鍋如佛跳牆的「原始湯(Primeval Soup)」,溶解在海水裡面有很多沒有生命的各種無機礦物質、化學元素等等,或許受到天候影響,如打雷等等,煮來煮去,碰來碰去,終於形成了最初生命之前的有機先驅物質(Precursor),如胺基酸等等,再由這些有機的先驅物質,碰撞組合成了最原始的生命,因而揭開了地球的生命演化;科學家曾經在實驗室裡成功地模擬出類似的情況。

-----廣告,請繼續往下閱讀-----

因此,回頭來說,埃迪卡拉的眾生物,有沒有可能就是這鍋原始湯佛跳牆的晚期產物?地球的生命起源與演化,氧氣和陽光,並非絕對必要的條件,光合作用也原始生命非絕對需要的;也就是說,地球從大約35億年以來開始生命大演化,在前面很漫長的一段時間內,進展甚慢,但是在原生代晚期歷經兩次地球最嚴重的冰雪地球催化,到了埃迪卡拉紀時候,無氧非光合作用的化合能作用(Chemosynthesis),提供了生命大躍進的原動力,從簡單的單細胞、雙細胞等微觀(Micro)生命(亦即隱生宙),演化成多細胞宏觀(Macro)生物(亦即顯生宙)?這當然也是諸多種可能之一。

圖十四 深海黑煙囪旁邊生機盎然的大管蟲,取自http://wsu-online.blogspot.com/2010/12/spring-break-project-giant-tube-worms.html

到目前的研究與瞭解這些地球上首次發現的埃迪卡拉紀實體化石,一方面逐步地揭開了一些神祕的面紗,但是同時也提出了更多更基礎重要的問題,回答了一個問題,又衍生出更多的問題,不會讓我(人們)的好奇心無聊沒事幹,爬了一山,還有更高那些山等著呢!研究的樂趣,就在此!哈哈,人生不虛此行。

本文原發表於催眠恐龍[2011-06-25]

文章難易度
timd_huang
24 篇文章 ・ 0 位粉絲
跟我玩恐龍去!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
0

文字

分享

2
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

-----廣告,請繼續往下閱讀-----

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

-----廣告,請繼續往下閱讀-----

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

-----廣告,請繼續往下閱讀-----

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

-----廣告,請繼續往下閱讀-----

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

-----廣告,請繼續往下閱讀-----

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

14
5

文字

分享

2
14
5
【2023 年搞笑諾貝爾獎快訊】10 項怪奇獲獎研究出爐
PanSci_96
・2023/09/15 ・3874字 ・閱讀時間約 8 分鐘

一年一度、讓你廢到笑出來的搞笑諾貝爾獎,今年在美東時間 9 月 14 日下午 6 點準時直播。

今年的主題為「水」,這次 10 項獲獎都或多或少與「水」有關(但大部分是口水),現在就快讓我們一起來看看今年的得獎快訊,並一起期待後續的個別研究報導吧~

化學和地質獎:為什麼地質學家與古生物學家會舔化石

這是一封說明「過去」地質學家與古生物學家,為什麼會有舔化石習慣的「快訊」(發表在期刊上,但被歸類為快訊),這封快訊說了幾個故事,其中最讓我印象深刻的,是「義大利地質之父」的喬瓦尼·阿爾杜伊諾(Giovanni Arduino,1714-1795)用自己的舌頭「品嚐」這些化石,分類出可能是史上第一個「地質時期」

故事的亮點是引用了喬瓦尼·阿爾杜伊諾的研究紀錄,看起來就像是個美食家在品嚐化石。

-----廣告,請繼續往下閱讀-----

文學獎:重複寫字,直到感覺不對勁

A 編小學時,曾被老師罰抄生字 100 遍,寫到一半突然懷疑這個字是不是這樣寫,趕緊回頭看前面寫的字,還把課本翻出來看才確定自己沒有寫錯。

上述的情境,稱為「猶昧感」(Jamais Vu),「猶昧感」是「既視感」(Deja Vu)的反義詞,描述人們對熟悉的事物,突然感到陌生,也是這篇論文主要探討的主題。

這研究的笑點在於他的實驗,他們讓受試者一直重複寫同一個字,跟小學被老師罰抄生字一樣。

實驗中,約有三分之二的受試者體驗到「猶昧感」,這些受試者大約在重複 30 次或一分鐘後開始感到異狀。另外,研究也發現平常越容易發生「既視感」的人,也更容易發生「猶昧感」,未來「猶昧感」的相關研究,可能會加深我們對「既視感」的理解。

-----廣告,請繼續往下閱讀-----
  • 原文研究: “The The The The Induction of Jamais Vu in the Laboratory: Word Alienation and Semantic Satiation,” Chris J. A. Moulin, Nicole Bell, Merita Turunen, Arina Baharin, and Akira R. O’Connor, Memory, vol. 29, no. 7, 2021, pp. 933-942.  doi.org/10.1080/09658211.2020.1727519

機械工程獎:死靈機器蜘蛛

會招喚骷髏或操縱屍體的死靈法師稱為 Necromancer,而科學家再次中二病發作,把用液壓操控的蜘蛛屍體,稱作 Necrorobotics 死靈機器。

我跟同事討論這種死靈機器,算不算是一種仿生科技?他覺得是,我覺得不是,你們覺得呢?

  • 原文研究:“Necrobotics: Biotic Materials as Ready-to-Use Actuators,” Te Faye Yap, Zhen Liu, Anoop Rajappan, Trevor J. Shimokusu, and Daniel J. Preston, Advanced Science, vol. 9, no. 29, 2022, article 2201174.  doi.org/10.1002/advs.202201174
死靈機器蜘蛛。

公共醫學獎:斯坦福馬桶

恩,就是接上各種感應器的物聯網馬桶,能即時檢測使用者的糞便與尿液。這東西最酷的是能「肛門辨識」,只要坐到馬桶上,斯坦福馬桶就能透過肛門的型態,辨識出使用者!

因為這個獎項,我才知道原來每個人的肛門都長得不一樣……謝謝你,搞笑諾貝爾獎。

-----廣告,請繼續往下閱讀-----
  • 原文研究:
    •  “A Mountable Toilet System for Personalized Health Monitoring via the Analysis of Excreta,” Seung-min Park, Daeyoun D. Won, Brian J. Lee, Diego Escobedo, Andre Esteva, Amin Aalipour, T. Jessie Ge, et al., Nature Biomedical Engineering, vol. 4, no. 6, 2020, pp. 624-635.  doi.org/10.1038/s41551-020-0534-9
    • “Digital Biomarkers in Human Excreta,” Seung-min Park, T. Jessie Ge, Daeyoun D. Won, Jong Kyun Lee, and Joseph C. Liao, Nature Reviews Gastroenterology and Hepatology, vol. 18, no. 8, 2021, pp. 521-522.  doi.org/10.1038/s41575-021-00462-0
    • “Smart Toilets for Monitoring COVID-19 Surges: Passive Diagnostics and Public Health,” T. Jessie Ge, Carmel T. Chan, Brian J. Lee, Joseph C. Liao, and Seung-min Park, NPJ Digital Medicine, vol. 5, no. 1, 2022, article 39.  doi.org/10.1038/s41746-022-00582-0
    • “Passive Monitoring by Smart Toilets for Precision Health,” T. Jessie Ge, Vasiliki Nataly Rahimzadeh, Kevin Mintz, Walter G. Park, Nicole Martinez-Martin, Joseph C. Liao, and Seung-min Park, Science Translational Medicine, vol. 15, no. 681, 2023, article eabk3489.  doi.org/10.1126/scitranslmed.abk3489

傳播獎:嗎話說著倒能你?

趣有超也獎學播傳,心擔別,的常正是來過反來起看子句得覺在現你!

你有試過快速把彩虹的顏色順序倒著背,或是把你說話中的每個名詞都倒過來講嗎?大家都知道這超難,但這份研究中的兩位受試著確有著超強「顛倒單字或語句」的能力。

研究對象以西班牙語為母語,他們能在對話中輕鬆地將 banana 念成 ananab,或是將「 basket is fun」念成「nuf si teksab」。研究著重在這兩位有著特殊能力的人,推理、記憶能力是否優於常人,以及大腦灰質、白質比例與一般人(對照組)是否有差別。

大腦如何組織語言一直都是個有趣的研究題目,像是為什麼中文的序順不會響影到閱讀,這也是 A 編跟大家都一樣好奇的。而了解大腦語言是如何形成的,也能推進對於失語症、癡呆症的症狀研究。

-----廣告,請繼續往下閱讀-----
  • 原文研究:“Neurocognitive Signatures of Phonemic Sequencing in Expert Backward Speakers,” María José Torres-Prioris, Diana López-Barroso, Estela Càmara, Sol Fittipaldi, Lucas Sedeño, Agustín Ibáñez, Marcelo L. Berthier, and Adolfo M. García, Scientific Reports, vol. 10, no. 10621, 2020.  doi.org/10.1038/s41598-020-67551-z

醫學獎:屍體兩個鼻孔的鼻毛數量是否一致?

俗稱鬼剃頭的「圓禿」(Alopecia areata)不只會頭髮脫落,同時睫毛、眉毛與鼻毛也會脫落,其中,鼻毛脫落會增加得到過敏、呼吸道感染的機率。

由於鼻毛的相關研究非常少,為此,研究者調查 20 具「遺體」的鼻毛數量與長度,並收集相關病史、死往原因…等數據,來評估正常人的鼻毛數量與長度。研究結果顯示,平均每個鼻孔的鼻毛數量約為 120~122 根,左右鼻孔並沒有顯著差異,鼻毛平均長度大約是 1 公分。

  • 原文研究:“The Quantification and Measurement of Nasal Hairs in a Cadaveric Population,” Christine Pham, Bobak Hedayati, Kiana Hashemi, Ella Csuka, Margit Juhasz, and Natasha Atanaskova Mesinkovska, Journal of The American Academy of Dermatology, vol. 83, no. 6, 2020, pp. AB202-AB202.  doi.org/10.1016/j.jaad.2020.06.902

營養獎:電流有一股「電味」

日本明治大學教授宮下芳明 (Homei Miyashita)與他的團隊,發現在筷子與吸管上附加微弱電流,會改變食物的味道。

他們發現微弱電流刺激舌頭時,會產生一股「電味」(論文上寫 Electric taste,你說我要怎麼翻比較好) 。這股「電味」味道如何呢?基本上沒有味道(不能啟動味覺細胞),但如果有其他味道存在,例如鹹味(氯化鈉)或鮮味(麩胺酸鈉),電味會讓食物吃起來更鹹或更鮮。

-----廣告,請繼續往下閱讀-----

接著,他們發明了連著電線的通電筷子與吸管(看起像整人玩具),證明了通電筷子與吸管確實能在不改變食物味道的情況下,讓人們吃進更少的鹽跟味精。

通電吸管構造
  • 原文研究:“Augmented Gustation Using Electricity,” Hiromi Nakamura and Homei Miyashita, Proceedings of the 2nd Augmented Human International Conference, March 2011, article 34.  doi.org/10.1145/1959826.1959860

教育獎:系統性研究課堂上感覺無聊的學生與老師

你覺得上課無聊嗎?多半人都會問答「是」,而這系列研究仔細分析了為什麼上課無聊,且越來越無聊的原因。

你可能會想:「那不就是老師上課很無聊啊,老師不有趣阿。」我只能說你們這樣太沒同理心了,搞不好老師也在想:「教你們真無聊!」

所以,研究者第一個想探討的問題是:「老師如果覺得無聊,會不會讓學生也覺得無聊。」先說結論,不會。

-----廣告,請繼續往下閱讀-----

雖然學生不會刻意去了解老師的心情。但如果學生明確感受到老師很無聊,像是死氣沉沉地念課文,學生就會覺得這堂課更無聊,進而影響學習動機與學習成效。某種程度上,研究還是印證了「老師不有趣覺得無聊」這件事,但老師是否在強顏歡笑,這就不得而知了。

另一個問題則是:「是不是想著上課很無聊,就會覺得更無聊?」沒錯,的確是這樣!只要上課前預期這堂課很無聊,那這堂課就會比你預期的還要更無聊!

  • 原文研究:
    • “Boredom Begets Boredom: An Experience Sampling Study on the Impact of Teacher Boredom on Student Boredom and Motivation,” Katy Y.Y. Tam, Cyanea Y. S. Poon, Victoria K.Y. Hui, Christy Y. F. Wong, Vivian W.Y. Kwong, Gigi W.C. Yuen, Christian S. Chan, British Journal of Educational Psychology, vol. 90, no. S1, June 2020, pp. 124-137.  https://pubmed.ncbi.nlm.nih.gov/31342514/
    • “Whatever Will Bore, Will Bore: The Mere Anticipation of Boredom Exacerbates its Occurrence in Lectures,” Katy Y.Y. Tam, Wijnand A.P. Van Tilburg, Christian S. Chan, British Journal of Educational Psychology, epub 2022.   doi.org/10.1111/bjep.12549

心理學獎:你會跟著抬頭看天空嗎?

他們到底在看什麼?眼前一群人停下腳步抬頭看著上方,你一定會跟著將視線移向相同的地方,看看他們到底在看什麼。

沒錯,這就是著名的從眾效應,或稱做群聚效應、羊群效應。這個1969年進行的經典實驗,應該很多人也聽說過。Stanley Milgram、Leonard Bickman、Lawrence Berkowitz 三人組,在紐約的街道上測試要有多少人同時往上看,才能吸引其他人也駐足湊熱鬧。

-----廣告,請繼續往下閱讀-----

這個實驗能得獎感覺毫不意外,甚至覺得怎麼現在才得獎!

群聚效應引響甚遠,因為整個社會的運作都養類人與人之間的互動與連結。不管是跟風買東西、參與熱鬧的大型活動、政治意識型態的抉擇等等,都能看到群聚效應影響著人們的身影。

大家都有可能是羊群裡面的羊。

  • 原文研究:“Note on the Drawing Power of Crowds of Different Size,” Stanley Milgram, Leonard Bickman, and Lawrence Berkowitz, Journal of Personality and Social Psychology, vol. 13, no. 2, 1969, pp. 79-82. psycnet.apa.org/doi/10.1037/h0028070

物理學獎:一群鯷魚能影響海流?

一隻拍翅膀的蝴蝶能讓海的對面產生颶風,那一群在海中游泳的鯷魚呢?他們可能直接影響了洋流與海面的大氣流動。

如果要計算颱風能量或是海洋鹽分的變化,我們通常會考慮海面風速與氣壓,要不然就是洋流、海溫和密度的垂直梯度等等。但這份研究發現,我們或許忽視了大海居民造成的影響。

研究發現只要到了鯷魚的產卵季,當天晚上海面附近海水的垂直混合程度會增加10~100倍。也就是這群游動的小魚們,像是攪拌棒一樣攪混了上層海洋,程度相當於地球物理現象造成的影響,對海溫與營養鹽分布的作用可能比我們想像的還大。

  • 原文研究: “Intense Upper Ocean Mixing Due to Large Aggregations of Spawning Fish,” Bieito Fernández Castro, Marian Peña, Enrique Nogueira, Miguel Gilcoto, Esperanza Broullón, Antonio Comesaña, Damien Bouffard, Alberto C. Naveira Garabato, and Beatriz Mouriño-Carballido, Nature Geoscience, vol. 15, 2022, pp. 287–292.  doi.org/10.1038/s41561-022-00916-3
所有討論 2