日本原子力研究所(Japan Atomic Energy Research Institute, JAERI)發現一種新 技術,讓貴金屬顆粒在支撐材料表面維持分散,經測試即使在汽車排氣中超過 100小時,此種觸媒仍可維持高度催化活性;而舊式轉化器所使用的觸媒在同樣 測試中活性已降低10%。因此在新式觸媒中並不需要使用過量的貴金屬。
音樂不是由大腦的單一區域處理的,而是需要多個區域協同合作。當聲音從耳朵進入大腦,聽覺皮質會處理音樂的基本訊息,包括音高、音量和音色,而小腦與基底核協助處理節奏,額葉則負責音樂中的訊息(如聲音與聲音之間的序列關係)。同時,大腦邊緣系統的杏仁核和海馬體則處理音樂引發的情緒(Braun Janzen et al, 2019)。
相較於日常說話,樂器的聲音涵蓋更大的頻率範圍,所以透過音樂訓練,聽損孩子能學會聽取更廣泛的聲音頻率,進而提升對音高的辨識能力(Chen et al., 2010; Torppa et al., 2014)。而不斷重複的接觸,例如讓孩子反覆聆聽歌曲,並配合簡單的動作,也能促進孩子對於聲音刺激的反應速度(Hadjidimitriou, 2013)。此外,歌曲通常由各種樂器和人聲交織而成,尤其是快節奏的音樂,而孩子在嘈雜環境中辨識語音的能力,透過哼唱歌曲或有助於加以提升(Torppa et al., 2018)。
Braun Janzen, T., & Thaut, M. H. (2019). Cerebral organization of music processing. In M. H. Thaut & D. A. Hodges (Eds.), The Oxford handbook of music and the brain. Oxford University Press.
Patel, A.D. (2012). Language, music, and the brain: a resource-sharing framework. In: P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and Music as Cognitive Systems (pp. 204-223). Oxford: Oxford University Press.
Chobert, J., François, C., Velay, J. L., & Besson, M. (2014). Twelve months of active musical training in 8-to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cerebral cortex, 24(4), 956-967.
Flohr, J. W., Miller, D. C., & DeBeus, R. (2000). EEG studies with young children: Music educators can benefit from knowing what has been learned about young children via the electroencephalogram (EEG). Music Educators Journal, 87(2), 28-54.
Chen, J. K. C., Chuang, A. Y. C., McMahon, C., Hsieh, J. C., Tung, T. H., & Li, L. P. H. (2010). Music training improves pitch perception in prelingually deafened children with cochlear implants. Pediatrics, 125(4), e793-e800.
Torppa, R., Huotilainen, M., Leminen, M., Lipsanen, J., & Tervaniemi, M. (2014). Interplay between singing and cortical processing of music: a longitudinal study in children with cochlear implants. Frontiers in Psychology, 5, 1389.
Torppa, R., Faulkner, A., Kujala, T., Huotilainen, M., & Lipsanen, J. (2018). Developmental links between speech perception in noise, singing, and cortical processing of music in children with cochlear implants. Music Perception, 36(2), 156–174.
Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2013). EEG-based classification of music appraisal responses using time-frequency analysis and familiarity ratings. IEEE Transactions on Affective Computing, 4(2), 161-172.
Neves, L., Correia, A. I., Castro, S. L., Martins, D., & Lima, C. F. (2022). Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neuroscience & Biobehavioral Reviews, 140, 104777.
Nan Y, Liu L, Geiser E, Shu H, Gong CC, Dong Q, Gabrieli JDE, Desimone R. (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6630-E6639.
Christiner, M., Bernhofs, V., & Groß, C. (2022). Individual differences in singing behavior during childhood predicts language performance during adulthood. Languages, 7(2), 72.
Gordon, R. L., Fehd, H. M., & McCandliss, B. D. (2015). Does music training enhance literacy skills? A meta-analysis. Frontiers in psychology, 6, 1777.
Let’s Play the LSL Way: Musical Fun. Adapted for Discovering and Exploring Musical Play Learning Experience. Hearing First. March 2020.