0

0
0

文字

分享

0
0
0

打造第一台奈米碳管電腦

NanoScience
・2013/10/22 ・842字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

carbon-nanotube-rendering

美國研究人員最近利用數萬根奈米碳管(Carbon nanotube, CNT)打造出第一台能執行作業系統、多工運算簡單程式、儲存及輸出結果的奈米碳管電腦(CNT-based computer)。此成果對於商用奈米碳管電腦而言是一重大進展,奈米碳管元件在速度和耗能表現上可望超越一般矽材料裝置。

奈米碳管可視為以平面碳材料捲曲而成的管狀結構,由於具有許多有用的電子特性,因此可作為電子元件的建構基石。在過去的研究中,碳管已經被用來製作電晶體、振盪器及半加器等元件,但要整合這些元件並構成一功能完整的電腦卻極為困難。困難之一在於必須將數百直根徑僅數奈米的碳管精確置於基板的正確位置上,方能形成電晶體,只要一根碳管擺放位置錯誤,便可能造成元件或整個邏輯電路失效。另一難處在於奈米碳管導電的一致性。製造奈米碳管時會同時產生金屬性與半導性碳管,雖然各有應用價值,但電性混合的碳管並不適合用來製作元件。

最近,史丹佛(Stanford)大學Max Shulaker研究團隊,設計了一套可同時使大量金屬性碳管失效的方法。他們首先關閉元件中的半導性碳管,接著將大電流輸入裝置中。大量電能被引入金屬性碳管,使其加熱並且汽化,而絲毫無損電路其他部份。Shulaker表示,能同時處理大量奈米碳管的方法相當重要,因為一台實際可用的電腦可能含有數十億的碳管結構。

為了減少錯置奈米碳管所導致的問題,該團隊採取了兩套做法。第一,他們讓奈米碳管成長於石英基板上,以確保大部份碳管(約99.5%)形成高指向的陣列。然而,這對含有數十億碳管的元件而言還不夠好,所以他們精心設計一電晶體佈局,能確保即使有部份碳管錯置,元件仍可正常運作。

-----廣告,請繼續往下閱讀-----

史丹佛團隊使用178個電晶體打造出能儲存及執行程式的裝置。雖然此系統是在1位元下操作,僅能執行一種邏輯運算(SUBNEG),但如果具有足夠的記憶體,該裝置理論上可執行任意計算。因此,此奈米碳管系統可視為是具備一般計算機功能的電腦。他們利用了此電腦完成計數及數字排序等任務,並且能執行MIPS指令集。詳見Nature|doi:10.1038/nature12502

 

資料來源:US researchers unveil first carbon-nanotube computer. PhysicsWorld [Sep 25, 2013]

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!

0

3
1

文字

分享

0
3
1
只要將大腦上傳到電腦中,複製出另一個你,就可以實現永生嗎?——《千腦智能新理論》
星出版
・2023/06/28 ・1983字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

假設在未來某個時候,我們有能力瞬間取得在電腦中重新創造一個人所需要的全部資料,假設我們的電腦有足夠能力模擬你和你的身體。果真如此,我完全不懷疑基於電腦的大腦會有意識和知覺,就像你一樣。但這會是你想要的嗎?也許你正在想像下列這種情境。

假設我們的電腦有足夠能力模擬你的身體、意識和知覺,這會是你想要的嗎?圖/Pixabay

你正處於生命的盡頭,醫師說你只剩下幾個小時的生命。此時你按下一個開關,你的大腦隨即一片空白。幾分鐘後,你醒過來,發現自己活在一個基於電腦的新身體裡。你的記憶完好無損,你覺得自己恢復了健康,展開新的永恆生命。你大喊:「耶!我還活著!」

現在想像一個稍微不同的情境。假設我們有技術可以複製你的生物大腦而不影響它,現在你按下開關之後,你的大腦被複製到一台電腦上,而你沒有任何感覺。幾分鐘後,電腦說:「耶!我還活著。」但是,你,那個生物你,還是存在。現在有兩個「你」,一個在生物身體中,一個在電腦身體中。電腦那個你說:「現在我已經上傳了,不需要原本那個身體了,請把它處理掉。」生物那個你說:「等一下,我還在,我不覺得有任何改變,我不想死。」我們應該如何處理這個問題?

解決這個難題的方法,或許就是讓生物那個你度過餘生,自然死亡。這似乎很合理。但是,在生物你死亡之前,世上有兩個你。生物你與電腦你會有不同的經歷,因此隨著時間推移,兩者漸行漸遠,變成了不同的人。例如,生物你和電腦你可能會發展出不同的道德與政治立場,生物你可能會後悔創造了電腦你,而電腦你可能不喜歡有一個生物老人聲稱是自己。

-----廣告,請繼續往下閱讀-----
在生物你死亡之前,世上有兩個你。隨著時間推移,兩者漸行漸遠,可能會發展出不同的道德與政治立場。圖/Pexels

更糟的是,你很可能會有壓力在你年輕時就上傳你的大腦。例如,想像一下,電腦你的智能健康,取決於大腦上傳時生物你的智能健康。因此,為了盡可能提高你的永生版本的生活品質,你應該在你心智健康最好時上傳你的大腦,譬如 35 歲時。你可能想在年輕時上傳大腦的另一個原因是,你以肉身活著的每一天都有可能意外死亡,因此失去永生的機會。因此,你決定在 35 歲時上傳自己。

請捫心自問:35 歲的生物你在複製了自己的大腦之後,可以安然殺死自己嗎?隨著你的電腦版本展開自己的生活,你(生物你)則慢慢衰老、最終死去,生物你會覺得自己已得到永生嗎?我認為答案是否定的。「上傳你的大腦」是個誤導的說法,你真正做的是把自己分裂成兩個人。

現在再想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了三個自己。現在有四個電腦你和一個生物你,這五個你開始有不同的經歷,漸行漸遠。每一個你都有獨立的意識,你是否已得永生?那四個電腦你,哪一個是永生的你?生物你慢慢衰老、邁向死亡,看著四個電腦你過各自的生活。這裡沒有共同的「你」,只有五個個體,雖然起初有相同的大腦和記憶,但隨即成為獨立的存在,此後過著不同的生活。

想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了好幾個自己,每個都有獨立的意識和不同的經歷,哪一個才是永生的你?圖/Pixabay

也許你已經注意到,這些情境與生孩子相似。當然,最大的不同是你不會在孩子出生時,上傳你的大腦到孩子的腦袋裡。然而,我們可說是在某程度上試圖這麼做,我們把家族史告訴孩子,教導他們,希望他們建立和我們一樣的道德觀和信仰。藉由這種方式,我們將我們的一些知識轉移到孩子的大腦裡。但隨著他們長大,他們會有自己的經歷,成為獨立的人,就像你上傳大腦產生的電腦你那樣。

-----廣告,請繼續往下閱讀-----

想像一下,如果你能把你的大腦上傳給你的孩子,你會這麼做嗎?如果你這麼做,我相信你會後悔。你的孩子將背負你的記憶,終其一生將致力忘記你做過的一切。

上傳大腦乍聽是個極好的主意,誰不想得永生呢?但是,藉由上傳大腦到電腦中來複製自己,其實無法實現永生,就像生孩子無法實現永生那樣。複製自己是開出一條岔路,而不是延伸原本的路。開出岔路之後,會有兩個擁有知覺和自我意識的存在,而不是只有一個。一旦你意識到這一點,上傳大腦的吸引力就會開始減弱。

——本文摘自《千腦智能新理論》,2023 年 5 月,星出版出版,未經同意請勿轉載。