0

0
0

文字

分享

0
0
0

仰望海面,波紋閃動

活躍星系核_96
・2013/07/26 ・5646字 ・閱讀時間約 11 分鐘 ・SR值 507 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

文 / 史杯時碳

「咕嚕,咕嚕...」幾團氣泡從我眼前經過,漂浮著、上升著。

視線跟隨著氣泡,我微微抬頭仰視;湛藍的海水之上,一片巨大的透明表面,開展在我的上方,晃動著、搖擺著。

那海面交織律動的波紋,閃閃發亮,耀眼的光線刺得讓我稍稍瞇起了眼睛。甩一甩頭,擺擺我的鰭狀前肢,乘著海流,在溫柔地包覆著我全身四周的海水中向前划行。

俯視下方的海底,有起起伏伏的山峰。珊瑚礁鋪滿一整片,一根根樹枝般的枝枒,聚集在一起生長成一面面向上舒展的橢圓形平台;各種鮮豔豐富的色彩,彷彿把所有大自然中最飽和的色調都呼喚過來這裡集合比賽。各種小魚穿梭在其中,牠們身上的斑斕花紋,也像是不想在這場盛宴中落在任何對手之後。

最近幾天游過的這附近,經常有大量的魚成群移動,有時候牠們經過我的上方,擠得遮蔽了穿過海面射入的耀眼光線。有一次,我看到大約有五千隻長鼻鸚哥魚聚集在一起產卵,牠們鬧哄哄地亂成一片,在那裏為了延續後代而互相交換著卵子與精子,一顆一顆的蛋把附近的海水都弄得混濁了!有時候,我會遇到一整群銀、黃、藍黑色交錯的黃鰭鮪魚;甚至我也曾經一下子看到一百多隻的鯊魚,或者是鯨魚這些大傢伙。

你能夠想像嗎?以上這些是一隻綠蠵龜洄游經過太平洋中央,吉里巴斯共和國的鳳凰群島(Phoenix Islands)海域時,所會看到的美麗景象。「那些(海洋生物們生機勃勃的)活動,本來就是海裡經常發生的事,但現在卻因為人類的參與,而使這些活動處處受限。」海洋科學家克雷格.史東(Greg Stone),不時微微地搖著頭,感性地如此闡述著。(1)

圖一:吉里巴斯,鳳凰島海域裡的魚群。Greg Stone:「那裡的魚大量成群地一起遊動,遮蔽了從海水表面射入的光線。」圖文擷取自(1)
圖二:大約五千隻鸚哥魚聚集在一起產卵。圖片擷取自(1)
圖三:銀、黃、藍黑色交錯的黃鰭鮪魚。圖片擷取自(1)


TED talk — 克雷格.史東:一次保育一個島嶼來拯救海洋

海洋,是地球生命的起源點,所有地球生物共同的故鄉。蔚藍的海水覆蓋約70%的地表,為大約97%的生命提供居所(3)。你知道嗎?地球上每一天出生的新生命中,有超過一半是來自海洋 (4)。海洋中的光合作用,產生我們賴以呼吸的氧氣大約一半的量(3,4);而長久以來,地球上大部分的有機碳,都在海洋中被吸收或儲存(這一過程主要由微生物所完成)(3)。龐大的海洋,儲存了地球上97%的水,穩定了地球上的氣候、天氣與溫度變化;沒有水,就沒有生命,因此,聲譽卓著、曾經進行過許多次深海研究與探險的女性海洋科學家Sylvia Earle說:「沒有藍色,就沒有綠色。(No blue, no green.)」[3]的確,如同她在2009年的TED大獎得主演講中所說的:「不管你生活在什麼地方,你喝的每一滴水,每一次的呼吸,都將你與大海聯繫起來。」


TED talk — Sylvia Earle的TED大獎願望:保護海洋


【塑膠垃圾 奔向大海】

海洋雖然對每一個人都如此重要,但是對於大部分生活與居住在遠離岸邊的陸地上的我們來說,卻又是如此遙遠,如此陌生,以至於我們時常把關注焦點都集中在陸地上,而在不知不覺中忽略了它的存在(補充參考:圖四)。我們經常沒有料想到,我們向大海排放的東西,或是對海洋的索取都會傷害到海洋(3);甚至,我們可能根本就沒有注意到自己正在向海洋排放,或者是索取一些東西。

我們向海洋索取,進行過度的漁業捕撈,超過了大自然補充的速度,使得大型魚類族群的個體數量急速減少,某些種類瀕臨絕種,而有些魚的體型則在幾十年內大幅縮小(6,7)。我們向海洋排放:除了經由河流進入大海的有毒工業、畜牧或家庭廢水以外,流入海裡的肥料等大量的養分(加上大型魚類減少的因素)破壞了原來的生態平衡,使得某些浮游植物過量增生,消耗掉大量的氧氣或者釋放大量毒素,因而讓某些海域甚至海灘變成了危險地帶(7);油輪或者是鑽油平台失事所造成的海上原油洩漏對海洋生物與海鳥的致命威脅相信大家都不難想像;然而,除了這些看起來明顯致命的有毒物質以外,我們一般人的日常生活裡,更可能自己在不知不覺中投向海洋的,卻是最常見的飲料瓶等等塑膠垃圾。

圖四:創造了以鯊魚「謝門」為主角的海洋生物漫畫「謝門的潟湖」的漫畫家Jim Toomey在TED演講中說:「(在某件事發生之前,)我對海洋的印象只是這樣,我覺得海洋只是一片藍海;這就是我們所有人對海洋的最初印象,很神秘……所以人們畫出來的地圖會像這樣:對陸地描繪得巨細靡遺,但一畫到陸地邊緣的海洋,就只是用藍色的顏料描繪成一大潭水而已,這是我在學校時對海洋的印象。就好像老師說:『所有的地理和科學,都只教到陸地邊緣而已,其他部分不會列入考試範圍。』」圖文取自(5)

許多海洋工作者都有令自己難以忘懷的,與海洋塑膠垃圾特殊的接觸經驗。我們提過的第一位海洋科學家Greg Stone十分熱愛搭潛水艇進行深海探險;他回憶起20年前,當他搭著日本政府所擁有的,世界上能潛入最深海域的潛艇下潛到5400公尺深的海底時,原本以為會到達一片純淨自然的海底區域,但是,非常意外的,當他們到達那裏時,卻發現早已經有一大片的塑膠垃圾和廢棄物領先了。這觸動了他的念頭:「那時我才明白,我不可能以玩樂的心情來研究科學和探索,我必須要更有深度,我要朝保育這個目標前進。」(1)

圖五:海洋科學家與保育工作者Greg Stone,在他身後螢幕上的是他所搭乘的,當時世界上能潛入最深海域的潛艇。圖文擷取自(1)

塑膠垃圾占了海洋垃圾中的80%~90%(8),而且其中有許多是飲料瓶與瓶蓋(尤其是,聚丙烯(PP)瓶蓋沒有被列入美國的塑膠瓶回收法案中)(9)。首次發現目前已經頗為知名的太平洋垃圾帶(Great Pacific garbage patch)的海洋學家Charles Moore船長,在兩個北夏威夷環礁上數以百萬計信天翁的棲息地中,發現信天翁父母們努力蒐集漂浮在海面上,分別從日本和美國被洋流所帶過來的瓶蓋,將它們誤當成是食物,先吞下再回吐餵給幼鳥吃。成千上萬隻幼鳥因此正在死亡線上掙扎,他們的胃裡滿是瓶蓋與其他垃圾(9)(圖六)。Moore船長在夏威夷北部的渦流處,用浮游生物拖網所採集的海水樣本中,發現裏頭的塑膠含量比浮游生物還多,以致於他感嘆,那片海洋已經逐漸變成「塑膠湯」了。

TED talk — 查理斯•摩爾:被塑膠充斥的海洋

圖六:從一隻死去的四個月大黑背信天翁的胃裡所取出的塑膠瓶蓋、塑膠碎片與其他垃圾。圖片擷取自(9)

Roz Savage小姐(10)在她35歲那一年,決定從原來身為一位管理顧問,穩定但枯燥的生活中解放出來,展開她不讓生命留白的熱血冒險旅程。她在2005年時完成一個人划船橫越大西洋的壯舉;挑戰成功後,她自然決定朝下一個更大、更困難的目標 — 橫越太平洋前進。她談到她的冒險旅程,其中有一段特別的經歷是,她有一次因為海水淡化設備故障,所以和另外一組正好經過附近海域的航行者聯絡在海上會合碰面。他們為了喚醒大眾對於北太平洋垃圾環流問題的重視,而用15000個空的塑膠瓶所綁成的兩艘船,也打算挑戰划船橫越太平洋。當他們碰頭的那一天,釣到一條大鬼頭刀魚,Roz說:「那是我三個月來吃過最棒的一餐。」她的新朋友告訴她:當天他們運氣實在不錯,因為他們前幾個星期釣到一條魚,把魚剖開時,「居然發現裡面全是塑膠。」(圖七)這一次的航行旅程,喚醒了她對於塑膠汙染,氣候暖化所導致的海平面上升等等生態問題的重視。(10)

圖七:Roz Savage在海上遇到的冒險同好所釣到的一條魚,剖開後發現魚腹有許多塑膠碎片。塑膠會釋放化學毒素到吃下它的生物體內,若人再把魚吃下去,毒素會囤積到人體內,影響健康(10)。圖片擷取自(10)

TED talk — 羅茲﹒沙維奇:為什麼我要划船横渡太平洋


【如果大海能夠 喚回曾經的愛】

既然塑膠垃圾在大海裡會造成這麼大的問題,我們是不是應該趕快行動,把他們全部都從海裡撈起來呢?充滿熱血的Dianna Cohen小姐[8],就曾經想這麼做。Cohen原本是一位使用塑膠袋作為創作材料的視覺藝術家,當她聽說關於北太平洋垃圾環流和垃圾漩渦的種種以後,就提出了一個計畫,準備了船隻和機器,想要出海把垃圾打撈上來,壓扁做成建材送給開發中國家使用。但是,當她和專家討論過以後,卻發現她的計畫所能打撈上來的垃圾量和全世界每天新排放到海裡的數量相比,只是九牛一毛。於是她領悟到:「真正的解決之道在於,我們必須把生產垃圾的源頭關起來。」她合作創辦了「塑膠汙染聯盟(Plastic Pollution Coalition)」,告訴大家:我們必須停止使用這種用過即丟,因此每天以全球性的規模入侵海裏的塑膠產品。我們該關注、擔心的不只是漂浮在海上的塑膠,還有所有那些充斥在我們生活四周的塑膠容器、包裝,和可能滲入我們食品中的塑膠毒素。除此以外,她也提醒我們,目前實際上的資源回收比率很低(在美國,低於7%),即使我們將塑膠瓶放入了回收桶,但是只要在資源回收過程中的任何一個環節發生失誤,塑膠垃圾最終的歸宿就很有可能是流入大海;而且即使是被回收的塑膠材料也只能作為次級的用途降級使用,不能真正回復成原來的原料。因此,她呼籲大家面對塑膠時,在原本的「3R」(「減量 (Reduce)」、「再利用( Reuse)」、「回收 (Recycle)」)原則前面,應該再加上一個「R」,即「拒絕(Refuse)」:盡可能不使用「用過即丟」的塑膠容器,而使用不鏽鋼瓶或者玻璃瓶等等來替代。(8)

TED talk — 戴安娜.科恩(Dianna Cohen):關於塑膠污染的殘酷事實

Dianna Cohen小姐提出了身為個人,可以從自己做起的減少塑膠汙染的行動,而在另外一個方面,身為一個民主社會與全世界的公民,我們還可以,或甚至說應該思考在社會與國家的層面上,應該制定或支持怎麼樣的制度來保護海洋。像「國際自然保護聯盟(IUCN)」的海洋保護法律專家Kristina Gjerde,就在TED演講(2)中,呼喚大家了解海洋的美好與重要性,制定保護公海的國際法,並且推動各國政府的合作,來管理並且避免佔64%的海洋面積,沒有被任何國家的法律所保護的海域受到破壞。還有,我們先前曾經提到兩次的老朋友 — 海洋科學家Greg Stone,致力於推動海洋保護區(相當於陸地上的國家公園或自然保護區)的成立。在他與保護國際(Conservation International)的努力推動、紐澳等周邊國家與大型國際組織的贊助,以及吉里巴斯共和國政府的誠意合作下,研議成立「鳳凰群島信託基金」,計畫籌資給予吉里巴斯禁止漁業捕撈的補貼(而事實上,尚在籌資階段時,吉里巴斯便停止了捕撈)(1);最後終於成立了鳳凰群島保護區(Phoenix Islands Protected Area,PIPA)(11),並且在2010年成為聯合國教科文組織(UNESCO)所指定的世界遺產。

2002年,正當Greg Stone開始著手推動保育鳳凰群島海域時,發生了因海水溫度異常上升而導致的珊瑚白化現象,有60%的珊瑚死亡(1)。這不啻是一大打擊;然而,這片海域的珊瑚礁卻以科學家所觀察到過最快的速度自然復原,現在已恢復到了往日鳳凰群島的生機。(請見圖八、圖九)Stone認為,這應該歸功於這片海域已成為一片保護區,有許多健康的魚群,海藻也在此落地生根,連帶地讓當地珊瑚礁也長得很好(1)。他評論這一件事情道:「就像一個生病的人,如果有很多種疾病纏身,就很難治癒,可能會死;但如果只感染了一種疾病,那就很有可能治癒。氣候變遷的溫室效應所造成的影響,是(在鳳凰群島海域這裡)唯一會威脅或影響珊瑚生長的因素,因為我們排除了過度捕撈,汙染與海岸開發等各種因素,所以珊瑚得以全速復原。」(1)

面對海洋現在每天都正在遭受全球性、數量龐大的塑膠垃圾汙染問題,雖然規模比鳳凰島珊瑚礁的白化危機還要大得多;在目前看來,身處在一個被塑膠所包圍的世界裡,人們似乎也不太可能一夕之間就停止塑膠的使用,好像前景不怎麼樂觀。但是,就像在Greg Stone的經驗中,他們並不是在事先就能夠預見珊瑚礁快速的復原;他們所做的,只是就預定好的海域保護計畫,一步一步的持續去穩定推動,因此而得到了雖然是意料之外的驚喜,但是卻是符合他們推動保護區初衷的果實。或許對於海洋垃圾,我們雖然很難馬上在實際的執行面上將所有問題根本的解決,但仍然應該一點一滴的持續努力;也許持續地累積正向的條件,有一天可能發生我們目前還沒能預見的轉機。反過來說,如果我們不願意為現在已經浮現的危機進行試圖思考並進行正向的努力,或甚至讓情況更加速地惡化,也許在潛在轉機有發生可能的階段之前,我們就已經先斷送了我們自己的機會了,不是嗎?至少,在下一次使用塑膠瓶時,我們可以想一想,怎麼樣盡可能減少讓現在自己手中的瓶子,有漂流到大海中的機會。想一想那湛藍清澈,在水底看了都刺眼的海水波紋、其中穿梭的龐大魚群、色彩美麗的珊瑚礁,和可愛的綠蠵龜吧!

TED talk — 克莉絲蒂娜·傑爾德:為公海立法

圖八:2002年,鳳凰群島海域發生了因海水溫度異常上升而導致的珊瑚白化、死亡現象。圖片擷取自(1)
圖九:2010年的鳳凰群島珊瑚礁,已恢復了往日生機。圖片擷取自(1),由Brian Skerry所攝影。

【參考資料與註解】

(1) 本段文字與前面兩段的海洋景象描述,是由Greg Stone 的TED演講 – “Saving the ocean, one island at a time”所提及的實際海洋觀察經驗,加以創作、改寫而來。

(2) Krinstina Gjerde, TED演講 – “Making law on the high seas”

(3) Sylvia Earle, TED演講 – “Sylvia Earle’s TED Prize wish to protect our oceans”

(4) Paul Snelgrove, TED演講 – “A census of the ocean”

(5) Jim Toomey, TED 演講– “Learning from Sherman the shark”

(6) Jeremy Jackson, TED演講 – “How we wrecked the ocean”

(7) Daniel Pauly, TED演講 – “The ocean’s shifting baseline”

(8) Dianna Cohen, TED演講 – “Tough truths about plastic pollution”

(9) Charles Moore, TED演講 – “On the seas of plastic”

(10) Roz Savage, TED演講 – “Why I’m rowing across the Pacific”

(11) 可參考Wikipedia – “Phoenix Islands Protected Area”條目。網址: http://en.wikipedia.org/wiki/Phoenix_Islands_Protected_Area

(12)補充推薦:Daniel Pauly, TED演講 – “The ocean’s shifting baseline”

文章難易度
活躍星系核_96
754 篇文章 ・ 93 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
1

文字

分享

0
1
1
臺灣整體空氣品質有變好嗎?有,但還需要解決臭氧這個隱藏角色!
研之有物│中央研究院_96
・2022/09/15 ・4323字 ・閱讀時間約 9 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

有變好,但還遠遠不夠好

空氣雖然平常摸不到也看不到,但是它大大影響我們的生存空間,例如每日上下班聞到的汽機車廢氣、巷口小吃店的油煙,以及其他隱藏在社區的 PM2.5 污染源等。這些年下來,臺灣整體的空氣品質是變好還是變壞?中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,請他深入談論空氣污染物 PM2.5 和臭氧的變化趨勢,以及都市區空氣品質的首要難題:「衍生型 PM2.5」。

臺灣的空氣品質到底有沒有進步?

2012 年 5 月,環境保護署發布「空氣品質標準修正草案」正式將 PM2.5 納入臺灣空氣品質管制,從圖表中可以看到,自 2012 年以來,PM2.5 的平均濃度的確有逐年降低的趨勢。

從數據來看,PM2.5 的平均濃度有逐年下降的趨勢,但是秋冬季節的污染衝擊依然顯著。圖中每個資料點代表一個月的平均值。圖/研之有物

PM2.5 除了逐年降低之外,大家也可以觀察到, PM2.5 其實有非常強的「季節性」。

一般而言,秋天、冬天時,中西部大多位於中央山脈的背風面,風速微弱不易將污染物吹散,污染濃度相對高;反之春天、夏天時,因為擴散條件好,污染濃度就相對低。

因此,夏天時,臺灣各縣市的污染狀況差異不大,但一進入秋冬,污染濃度在空間分佈上就呈現出非常明顯的差異:中南部特別嚴重。

從數據來看,臺灣各縣市的能見度在夏天時差異不大,但是中南部在秋冬時的能見度仍然不佳。圖中每個資料點代表一個月的平均值。圖/研之有物

隨著時間推進,PM2.5 污染正在逐漸改善,但整體而言,污染情況還是很嚴重,尤以中南部更為嚴峻。我們可以說,臺灣空氣品質在眾人努力之下慢慢變好,但我們離好的空氣品質仍然有一段很遙遠的距離。

「在變好,可是遠遠不夠好」周崇光這麼說。

大家的濃度都在降,除了臭氧?

前面已提到 PM2.5 濃度逐年降低,其他空氣污染物諸如非甲烷碳氫化合物(NMHC)、氮氧化物(NOx)的數據都有逐年下降的趨勢,但臭氧(O3)一枝獨秀,不僅沒有變少,有時甚至還會有上升的跡象。

這到底發生了什麼事?

從數據來看,空氣污染物例如非甲烷碳氫化合物(NMHC)、氮氧化物(NOx)都逐年降低,然而臭氧(O3)濃度卻沒有變少的趨勢。圖中每個資料點代表一個月的平均值,「12 移動平均」表示污染物在該年連續 12 個月的平均值。圖/研之有物

若想要了解箇中原因,我們必須回顧臭氧的形成機制,與都市的光化學煙霧(Photochemical smog)有關(見下圖)。

首先,氮氧化物(NOx)和揮發性有機化合物(VOCs),是形成臭氧(O3)的主要前驅物。

二氧化氮(NO2)在紫外線的照射下(hν 表示能量),會分解成一氧化氮(NO)和一顆氧原子(O),當這顆氧原子碰到氧氣(O2)時,就跑出臭氧(O3)。

當揮發性有機化合物(VOCs)碰上氫氧自由基(OH·)時,會被氫氧自由基氧化形成有機過氧自由基(RO2·),有機過氧自由基隨後會氧化一氧化氮(NO),並使二氧化氮(NO2)再生回來,由此可在大氣中循環產生臭氧。

光化學煙霧是空氣污染物的混合物,是由氮氧化物(NOx)和揮發性有機化合物(VOCs)與陽光發生一系列反應而成,而臭氧(O3)就在反應路徑中不斷循環。圖/研之有物

等等,那臭氧持續上升的原因是?

雖然 NO2 被紫外線分解後會產生 NO 和 O3,要注意的是 NO 碰上 O3 時,又會反應為 NO2,於是 NO—NO2—O3 在大氣中保持著動態的平衡關係,因此當我們減少一氧化氮的污染時,上述的光化學平衡就會有利於增加臭氧的濃度。

而在過去這些年,我國的污染防制使得大氣中氮氧化物濃度一直在減少,一氧化氮也相應下降,當一氧化氮越來越少的時候,也越來越少的臭氧會被轉化成二氧化氮,使得累積在空氣中的臭氧變多了。

因此,我們在下圖可看到,代表臭氧的紅線上升了,而代表二氧化氮的綠線下降了。

臺灣的污染防制使得大氣中氮氧化物濃度一直在減少,一氧化氮也就相應下降,當一氧化氮越來越少的時候,也表示越來越少的臭氧會被消耗轉化成二氧化氮,使得累積在空氣中的臭氧變多了。圖中每個資料點代表一個月的平均值,「12 移動平均」表示污染物在該年連續 12 個月的平均值。圖/研之有物

既然無論空氣品質變好或變壞,臭氧的濃度都很高,甚至都會變高,那麼研究人員到底該怎麼確認整體空氣品質真的有所改善?

周崇光指出,事實上,只要將「臭氧和二氧化氮的濃度加起來」,統合為「大氣氧化劑的濃度」,並和其他污染物進行比對,就可以從數據中確認:即使臭氧的濃度上升,但兩者總和的數據是減少的、空氣品質的確正在改善!不過還要更加努力才能克服上述的困境,進而成功降低大氣中臭氧的濃度。

衍生型 PM2.5:都市空氣品質的挑戰

我們總是用 PM2.5 來統稱粒徑小於或等於 2.5 微米的細懸浮微粒,用 PM10 統稱粒徑小於或等於 10 微米的懸浮微粒,也就是說,它指的是粒徑在某個尺寸內的粒子濃度。

然而,你有沒有想過,這些懸浮微粒到底包含了哪些東西呢?

周崇光笑著說,「裡面五花八門,什麼怪東西都有啦!」,懸浮微粒的成分可是高達上百種呢!

臺灣的 PM2.5 組成非常複雜,像是海鹽、元素碳(也稱黑碳,EC)、硝酸離子(NO₃-)、硫酸離子(SO₄²-)、銨離子(NH4+)、重金屬、以及各式各樣的有機化合物等等,不同縣市的組成分布也有所差異。

比較中研院過去(2003-2009)與環保署最近(2017-2021)各自調查的 PM2.5 化學組成,近五年來雖然臺灣 PM2.5 整體濃度下降了,但是 PM2.5 主要的組成分布則沒有明顯改變。

中研院與環保署調查了臺灣 PM2.5 整體濃度與組成,圓餅圖中心為該地區的 PM2.5 平均值,近五年來,同一地區 PM2.5 整體濃度下降,但化學組成無明顯改變。圖/研之有物

周崇光提到,要解決臺灣的 PM2.5 空污問題,減少衍生型 PM2.5 才是主線!

與黑碳、海鹽這些直接來自大自然或人為產生的「原生」微粒不同,大部分硫酸鹽、硝酸鹽、銨鹽和有機微粒是在大氣中經過複雜化學反應「衍生」而成的,因此稱為「衍生型 PM2.5」。

衍生型微粒的生成,除了需要有特定的前驅氣體,例如:SO2 氧化後產生硫酸鹽、NO2 氧化後產生硝酸鹽,以及有機氣體氧化後產生有機微粒等;還需要有促成反應的大氣氧化劑,例如:臭氧(O3)和氫氧自由基。

這顯示出臺灣的 PM2.5 跟臭氧是一體兩面的空污難題。

由於高濃度的衍生型 PM2.5 在人類肉眼來看宛若煙霧一般,再加上是由一系列光化學反應而成,因此又稱為光化學煙霧。

洛杉磯是受光化學煙霧汙染的著名案例,大英百科全書提到,光化學煙霧又可稱為洛杉磯煙霧(Los Angeles smog)。圖/photos_mweber

中研院團隊過去幾年持續在臺灣地區進行的 PM2.5 的化學特徵調查,研究顯示,衍生型 PM2.5 在細懸浮微粒污染中佔據了非常大的比例(>70%)。然而可惜的是,礙於儀器技術的關係,團隊無法在全臺灣遍布監測 PM2.5 成分的儀器。

若是想要將不同來源的 PM2.5 化學成分準確即時的分析出來,這樣的儀器造價不菲。因此周崇光表示,在光化學煙霧的議題上,大氣科學家的目標並非獲得長期連續的監測資料,而是在關鍵的幾個研究站中,致力於找出光化學煙霧的基礎理論架構和反應機制,並協助政府機關制定防制策略。

中研院 2019 年 3 月曾在高屏地區的都市區進行 PM2.5 的化學特徵調查,共取樣 8 個地點,平均結果如上圖。銨鹽、硝酸鹽、硫酸鹽和有機微粒這些衍生型 PM2.5 的比例佔了七成以上,可看到都市區的硝酸鹽和有機微粒的比例有明顯增加。圖/研之有物

就在臺中!全臺第一座都市空氣污染研究站

為了釐清城市臭氧和 PM2.5 濃度變異的物理化學機制,中央研究院環變中心底下的空氣品質專題中心於 2021 年底,在臺中建立了全臺第一座整合都市氣象學和大氣化學的研究站,是國內目前最完整的大氣物理化學監測站。

在這個研究站中,大氣科學家除了可以即時監測 PM2.5 的濃度,也可以掌握懸浮微粒的化學成分,包括量測揮發性有機物、二氧化氮、二氧化硫、一氧化氮、臭氧等微粒前驅污染物的濃度變化,藉此釐清都市空品的關鍵因子,協助研擬污染防制策略。

然而,為什麼要將研究站設立在臺中呢?周崇光表示,「無論是人口、能源、地理位置,還是大氣科學的角度,臺中均有著特殊的價值和意義」。

在空氣品質不佳的中西部之中,臺中不僅是人口數最多的都市,地理位置也讓臺中的邊界層條件具有相當高的複雜性,若能破解臺中盆地大氣環流的詳細機制,將對都市氣象學帶來可觀的突破,而臺中火力發電廠的污染和牽涉的能源議題,更是國內社會相當關注的重要焦點,因此,中研院空品專題中心最終決定將研究站設立於臺中。

中研院空品專題中心預計在三年後(2025 年),於臺中研究站取得第一階段的經驗和資料,隨後延伸應用至臺灣的其他城市,希望能透過學術研究與各單位協作逐步解決都市空氣品質的問題,突破當前空氣污染防制的瓶頸。

中央研究院空氣品質專題中心於 2021 年底,在臺中建立了全臺第一座都市空氣污染研究站,希望找出臺灣都市區空氣品質的關鍵因子。圖/周崇光
研之有物│中央研究院_96
248 篇文章 ・ 2032 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
0

文字

分享

0
3
0
【水獺媽媽專欄:從日常學永續】誰亂丟垃圾?飄進海裡的垃圾讓動物們吃壞肚子了!
PanSci_96
・2022/09/09 ・703字 ・閱讀時間約 1 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

每年的 6 月 8 日被訂為世界海洋日,這個節日是希望每個人都可以好好認識海洋,並且重視汙染與資源過度開發的問題,因為海洋大約佔了地球的 70%,扮演著對於地球非常重要的角色,但近年來因為過度的開發,導致海洋生態系遭受破壞。

甚至,在荒野保護協會 2020 年的調查報告中發現,海洋垃圾中佔比的前五名,分別是寶特瓶、塑膠瓶蓋、菸蒂、吸管和塑膠提袋,這五項中就有四項是塑膠製品!

前五名的海洋垃圾中,有四個都是塑膠製品。圖/水獺媽媽提供

那我們要怎麼幫助減少海洋垃圾呢?

除了減少使用一次性塑膠製品之外,我們在去海邊遊玩的時候,如果有看到沙灘上有散落的垃圾,也可以一起幫忙搜集起來丟掉,以免在漲潮時候被海浪拍打進海裡,被海洋動物誤食。

如果垃圾還是不小心掉到海裡怎麼辦呢?於是世界各國開始研究起了清理海洋垃圾的方法。

澳洲的 Seabin 海洋垃圾桶就是一個成功的例子,它將港口或者岸邊的垃圾作為主要回收目標,可以 24 小時運轉,一年可以清理掉 1.5 噸的垃圾!

淨灘活動對於減少海洋垃圾非常有幫助。圖/水獺媽媽提供

其實還有很多很有創意的發明,都可以幫我們解決海洋垃圾的問題,但是如果我們從根源做起,不亂丟垃圾、確實做好回收分類,看到公共區域的垃圾可以隨手撿起來,改變自己小小的習慣,大家都有這樣的共識,就可以發揮無限大的效用。

隨手撿垃圾、不亂丟、要分類,就能讓海洋更乾淨!圖/水獺媽媽提供
PanSci_96
1006 篇文章 ・ 973 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

6
2

文字

分享

1
6
2
什麼!樹木也能分陰、陽?這到底是風水還是植物學啊?——《聆聽樹木的聲音》
麥田出版_96
・2022/08/30 ・2618字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/詹鳳春

樹的光飽和點:陽樹比陰樹更需要陽光

樹木主要可分為陰樹、陽樹及中性樹。所謂陽樹,即偏好日照,當日照不充足便容易枯損衰弱。反之,即使日照不充足也可以健全生長,稱為陰樹。還有介在陰樹與陽樹之間,稱為中性樹。

植物的葉子進行生命維持活動。對植物而言,光為生存的能量,如同動物攝取食物般的重要。換句話說,能否取得充分的日照為樹木的死活問題。

葉子為了收集光照,在葉的構造內也下了不少的功夫。常見葉大且薄,在葉的背後及內側可有效的收集光照。葉表面附著了一層薄膜的角質層,除了讓水分難以透過以外,還可防止葉表蒸發,保護葉內組織。

櫻花樹是陽樹,日照需求高。圖/Wikipedia

自葉的生理角度來看,陰樹與陽樹的最大差異,在於光飽和點光合作用速度不同。一般光照量的最高限度,稱為光飽和點。因此日照需求度高的樹木為陽樹,能耐日蔭為陰樹。

陰陽特質的掌握,有助於適地適木的配植。例如櫻花樹(陽樹)的光飽和點高,受到強光而不斷增加光合作用量,當光照變弱時光合作用量也隨之降低,長期下來影響櫻花樹的生長。

樹木陰陽的差異並沒有明確基準,如一天必須要達到多少小時才能存活?這是隨著原生地的環境,以及培育經驗法則所分類。樹木的成長,是隨著光照強度性質而改變。

例如,幼木時可以在林蔭弱光環境下生長,長大為成木對光的需求也慢慢增大。相對的,需要強光生長為陽樹,周邊若有高大喬木環境時生長受阻,而陰樹即使周邊有大樹也可生長。

一般陽樹多為落葉樹種,因生長快速,樹幹易粗大且短命趨勢。相對的陰樹多為常綠樹種,生長慢,壽命也較長。

除了樹種外,葉子也可分為陰葉、陽葉

此外葉子也可區分陰葉及陽葉;陽葉受到強光,光合作用量增加,陰葉則是利用較弱的光照度進行光合作用。

對樹木而言,最適切的光照度為晴朗的上午,午後的西曬通常帶給部分樹種生長阻礙。路邊常見的紫薇,當夏季午後受到強烈西曬、高溫過熱,反而光合作用量頓時減少。過於高溫時,葉內含水量隨之減少,葉內的氣孔關閉後便無法呼吸交換而影響光合作用。

都市行道樹的日照條件也決定樹木生死,受到各方高樓環抱而遮蔽日照,光合作用也會受到影響。尤其當陽樹日照不充分時生長容易出現阻礙,即使為耐陰的山茶花、冬青也會出現樹勢低下及開花不良、病蟲害等問題。

路邊常見的紫薇,若受到強烈日照,反而會減少光合作用量。圖/Wikipedia

一片葉子的生命有多長?

針葉樹與闊葉樹的葉型,表現出樹木存活的戰略。

常見的針葉樹種柳杉、松樹等為常綠樹種,葉子細長、如針狀。這是為了取得更多的日照得以行光合作用,並不斷的往上生長。藉由向上生長與其他植物相互競爭,取得日照。

雖然稱為常綠樹,但也並非不落葉。尤其光合作用效率變低後,老葉陸續落葉並與新葉進行交替更新。樹木為了維持葉子也需要充分的養分,除了蓄積於枝條、樹幹以外,也儲藏於針葉樹葉內。

一般常綠樹的葉子壽命平均一到兩年,松樹的葉子甚至二到十年的也有。常綠樹的壽命,取決於環境。即使相同種,也會因日照、降雨量、土壤環境的不同而出現差異。

當環境要素越是不良時,葉子的壽命也就越長。簡單說,光合作用效率變低,養分的回收期間也就更長,而葉子的壽命也變長。一般熱帶地區的常綠樹,多數葉子的壽命為三個月。

即使先天抽了一張好牌,沒有好的成長環境也是枉然

樹木的生長條件之中,氣溫扮演著非常重要的角色。例如:將暖地生長的樹木種植於寒冷地,易受寒害,葉子變黑、枯死。相反的,習慣寒冷地的樹木若種植於暖地時,就容易出現新芽生長停頓等現象。

諸如此類的現象,可以說是樹木各自的生理特徵。

梨子在冬季容易受到寒害,造成葉子變黑、枝幹枯死。圖/台中市政府

樹木以根系吸收養水分,枝葉進行光合作用並製造能量。暖地或喜日照的樹木,光合作用能力非常旺盛,所製造的糖直接被樹體吸收使用,而水及空氣自葉的氣孔排出為蒸散。

就另一個角度來看;當氣溫升高時,蒸散旺盛而葉溫也隨之下降。而蒸散旺盛也會讓樹木失去大量水分,甚至引起脫水狀態。

因此,樹木為了維持本身機能平衡,配合氣候進行生理活動。例如:熱帶雨林的樹木行光合作用時,根系需要吸收大量水分;而沙漠的植物幾乎處於冬眠,受到強烈熱氣後關閉氣孔,將水分儲存於體內等。

生活在都市裡的樹木,面對了哪些壓力?

樹木面對各式各樣環境要素,其生活樣式也不同。然而這樣的生活並非一朝一夕,而是經過不斷演變而獲得的機能。當環境突然改變時,樹木當然也面對很大的生長壓力。

行道樹面對的都市環境,如水泥、柏油等人工基盤,引起的高溫化要比郊外氣溫還高,遠遠不同於自然環境生長的樹木。

那些生存在都市內的行道樹和景觀樹,它們面臨的氣候環境,又是截然不同的情況了。圖/Pixabay

面對嚴峻的都市微氣候環境,水分吸收為生存的關鍵要素之一。當水分不充足,直接反映於蒸散的受阻。而通風不良時,枝葉蒸散也容易出現病蟲害。

相對的,風過大反而帶給樹木物理損傷,同時引起土壤蒸散、落葉等問題。尤其長期遭受東北季風吹襲,因低溫使根系衰弱無法吸收水分,間接影響蒸散能力。行道樹受到大樓風影響也容易出現落葉、枝條斷裂、傾倒等災害,其環境因素直接影響樹木生理。

——本文摘自《聆聽樹木的聲音》,2022 年 7 月,麥田出版

所有討論 1
麥田出版_96
18 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。