0

0
0

文字

分享

0
0
0

仰望海面,波紋閃動

活躍星系核_96
・2013/07/26 ・5646字 ・閱讀時間約 11 分鐘 ・SR值 507 ・六年級

文 / 史杯時碳

「咕嚕,咕嚕...」幾團氣泡從我眼前經過,漂浮著、上升著。

視線跟隨著氣泡,我微微抬頭仰視;湛藍的海水之上,一片巨大的透明表面,開展在我的上方,晃動著、搖擺著。

那海面交織律動的波紋,閃閃發亮,耀眼的光線刺得讓我稍稍瞇起了眼睛。甩一甩頭,擺擺我的鰭狀前肢,乘著海流,在溫柔地包覆著我全身四周的海水中向前划行。

-----廣告,請繼續往下閱讀-----

俯視下方的海底,有起起伏伏的山峰。珊瑚礁鋪滿一整片,一根根樹枝般的枝枒,聚集在一起生長成一面面向上舒展的橢圓形平台;各種鮮豔豐富的色彩,彷彿把所有大自然中最飽和的色調都呼喚過來這裡集合比賽。各種小魚穿梭在其中,牠們身上的斑斕花紋,也像是不想在這場盛宴中落在任何對手之後。

最近幾天游過的這附近,經常有大量的魚成群移動,有時候牠們經過我的上方,擠得遮蔽了穿過海面射入的耀眼光線。有一次,我看到大約有五千隻長鼻鸚哥魚聚集在一起產卵,牠們鬧哄哄地亂成一片,在那裏為了延續後代而互相交換著卵子與精子,一顆一顆的蛋把附近的海水都弄得混濁了!有時候,我會遇到一整群銀、黃、藍黑色交錯的黃鰭鮪魚;甚至我也曾經一下子看到一百多隻的鯊魚,或者是鯨魚這些大傢伙。

你能夠想像嗎?以上這些是一隻綠蠵龜洄游經過太平洋中央,吉里巴斯共和國的鳳凰群島(Phoenix Islands)海域時,所會看到的美麗景象。「那些(海洋生物們生機勃勃的)活動,本來就是海裡經常發生的事,但現在卻因為人類的參與,而使這些活動處處受限。」海洋科學家克雷格.史東(Greg Stone),不時微微地搖著頭,感性地如此闡述著。(1)

圖一:吉里巴斯,鳳凰島海域裡的魚群。Greg Stone:「那裡的魚大量成群地一起遊動,遮蔽了從海水表面射入的光線。」圖文擷取自(1)
圖二:大約五千隻鸚哥魚聚集在一起產卵。圖片擷取自(1)
圖三:銀、黃、藍黑色交錯的黃鰭鮪魚。圖片擷取自(1)


TED talk — 克雷格.史東:一次保育一個島嶼來拯救海洋

-----廣告,請繼續往下閱讀-----

海洋,是地球生命的起源點,所有地球生物共同的故鄉。蔚藍的海水覆蓋約70%的地表,為大約97%的生命提供居所(3)。你知道嗎?地球上每一天出生的新生命中,有超過一半是來自海洋 (4)。海洋中的光合作用,產生我們賴以呼吸的氧氣大約一半的量(3,4);而長久以來,地球上大部分的有機碳,都在海洋中被吸收或儲存(這一過程主要由微生物所完成)(3)。龐大的海洋,儲存了地球上97%的水,穩定了地球上的氣候、天氣與溫度變化;沒有水,就沒有生命,因此,聲譽卓著、曾經進行過許多次深海研究與探險的女性海洋科學家Sylvia Earle說:「沒有藍色,就沒有綠色。(No blue, no green.)」[3]的確,如同她在2009年的TED大獎得主演講中所說的:「不管你生活在什麼地方,你喝的每一滴水,每一次的呼吸,都將你與大海聯繫起來。」


TED talk — Sylvia Earle的TED大獎願望:保護海洋


【塑膠垃圾 奔向大海】

海洋雖然對每一個人都如此重要,但是對於大部分生活與居住在遠離岸邊的陸地上的我們來說,卻又是如此遙遠,如此陌生,以至於我們時常把關注焦點都集中在陸地上,而在不知不覺中忽略了它的存在(補充參考:圖四)。我們經常沒有料想到,我們向大海排放的東西,或是對海洋的索取都會傷害到海洋(3);甚至,我們可能根本就沒有注意到自己正在向海洋排放,或者是索取一些東西。

我們向海洋索取,進行過度的漁業捕撈,超過了大自然補充的速度,使得大型魚類族群的個體數量急速減少,某些種類瀕臨絕種,而有些魚的體型則在幾十年內大幅縮小(6,7)。我們向海洋排放:除了經由河流進入大海的有毒工業、畜牧或家庭廢水以外,流入海裡的肥料等大量的養分(加上大型魚類減少的因素)破壞了原來的生態平衡,使得某些浮游植物過量增生,消耗掉大量的氧氣或者釋放大量毒素,因而讓某些海域甚至海灘變成了危險地帶(7);油輪或者是鑽油平台失事所造成的海上原油洩漏對海洋生物與海鳥的致命威脅相信大家都不難想像;然而,除了這些看起來明顯致命的有毒物質以外,我們一般人的日常生活裡,更可能自己在不知不覺中投向海洋的,卻是最常見的飲料瓶等等塑膠垃圾。

-----廣告,請繼續往下閱讀-----
圖四:創造了以鯊魚「謝門」為主角的海洋生物漫畫「謝門的潟湖」的漫畫家Jim Toomey在TED演講中說:「(在某件事發生之前,)我對海洋的印象只是這樣,我覺得海洋只是一片藍海;這就是我們所有人對海洋的最初印象,很神秘……所以人們畫出來的地圖會像這樣:對陸地描繪得巨細靡遺,但一畫到陸地邊緣的海洋,就只是用藍色的顏料描繪成一大潭水而已,這是我在學校時對海洋的印象。就好像老師說:『所有的地理和科學,都只教到陸地邊緣而已,其他部分不會列入考試範圍。』」圖文取自(5)

許多海洋工作者都有令自己難以忘懷的,與海洋塑膠垃圾特殊的接觸經驗。我們提過的第一位海洋科學家Greg Stone十分熱愛搭潛水艇進行深海探險;他回憶起20年前,當他搭著日本政府所擁有的,世界上能潛入最深海域的潛艇下潛到5400公尺深的海底時,原本以為會到達一片純淨自然的海底區域,但是,非常意外的,當他們到達那裏時,卻發現早已經有一大片的塑膠垃圾和廢棄物領先了。這觸動了他的念頭:「那時我才明白,我不可能以玩樂的心情來研究科學和探索,我必須要更有深度,我要朝保育這個目標前進。」(1)

圖五:海洋科學家與保育工作者Greg Stone,在他身後螢幕上的是他所搭乘的,當時世界上能潛入最深海域的潛艇。圖文擷取自(1)

塑膠垃圾占了海洋垃圾中的80%~90%(8),而且其中有許多是飲料瓶與瓶蓋(尤其是,聚丙烯(PP)瓶蓋沒有被列入美國的塑膠瓶回收法案中)(9)。首次發現目前已經頗為知名的太平洋垃圾帶(Great Pacific garbage patch)的海洋學家Charles Moore船長,在兩個北夏威夷環礁上數以百萬計信天翁的棲息地中,發現信天翁父母們努力蒐集漂浮在海面上,分別從日本和美國被洋流所帶過來的瓶蓋,將它們誤當成是食物,先吞下再回吐餵給幼鳥吃。成千上萬隻幼鳥因此正在死亡線上掙扎,他們的胃裡滿是瓶蓋與其他垃圾(9)(圖六)。Moore船長在夏威夷北部的渦流處,用浮游生物拖網所採集的海水樣本中,發現裏頭的塑膠含量比浮游生物還多,以致於他感嘆,那片海洋已經逐漸變成「塑膠湯」了。

TED talk — 查理斯•摩爾:被塑膠充斥的海洋

圖六:從一隻死去的四個月大黑背信天翁的胃裡所取出的塑膠瓶蓋、塑膠碎片與其他垃圾。圖片擷取自(9)

Roz Savage小姐(10)在她35歲那一年,決定從原來身為一位管理顧問,穩定但枯燥的生活中解放出來,展開她不讓生命留白的熱血冒險旅程。她在2005年時完成一個人划船橫越大西洋的壯舉;挑戰成功後,她自然決定朝下一個更大、更困難的目標 — 橫越太平洋前進。她談到她的冒險旅程,其中有一段特別的經歷是,她有一次因為海水淡化設備故障,所以和另外一組正好經過附近海域的航行者聯絡在海上會合碰面。他們為了喚醒大眾對於北太平洋垃圾環流問題的重視,而用15000個空的塑膠瓶所綁成的兩艘船,也打算挑戰划船橫越太平洋。當他們碰頭的那一天,釣到一條大鬼頭刀魚,Roz說:「那是我三個月來吃過最棒的一餐。」她的新朋友告訴她:當天他們運氣實在不錯,因為他們前幾個星期釣到一條魚,把魚剖開時,「居然發現裡面全是塑膠。」(圖七)這一次的航行旅程,喚醒了她對於塑膠汙染,氣候暖化所導致的海平面上升等等生態問題的重視。(10)

-----廣告,請繼續往下閱讀-----
圖七:Roz Savage在海上遇到的冒險同好所釣到的一條魚,剖開後發現魚腹有許多塑膠碎片。塑膠會釋放化學毒素到吃下它的生物體內,若人再把魚吃下去,毒素會囤積到人體內,影響健康(10)。圖片擷取自(10)

TED talk — 羅茲﹒沙維奇:為什麼我要划船横渡太平洋


【如果大海能夠 喚回曾經的愛】

既然塑膠垃圾在大海裡會造成這麼大的問題,我們是不是應該趕快行動,把他們全部都從海裡撈起來呢?充滿熱血的Dianna Cohen小姐[8],就曾經想這麼做。Cohen原本是一位使用塑膠袋作為創作材料的視覺藝術家,當她聽說關於北太平洋垃圾環流和垃圾漩渦的種種以後,就提出了一個計畫,準備了船隻和機器,想要出海把垃圾打撈上來,壓扁做成建材送給開發中國家使用。但是,當她和專家討論過以後,卻發現她的計畫所能打撈上來的垃圾量和全世界每天新排放到海裡的數量相比,只是九牛一毛。於是她領悟到:「真正的解決之道在於,我們必須把生產垃圾的源頭關起來。」她合作創辦了「塑膠汙染聯盟(Plastic Pollution Coalition)」,告訴大家:我們必須停止使用這種用過即丟,因此每天以全球性的規模入侵海裏的塑膠產品。我們該關注、擔心的不只是漂浮在海上的塑膠,還有所有那些充斥在我們生活四周的塑膠容器、包裝,和可能滲入我們食品中的塑膠毒素。除此以外,她也提醒我們,目前實際上的資源回收比率很低(在美國,低於7%),即使我們將塑膠瓶放入了回收桶,但是只要在資源回收過程中的任何一個環節發生失誤,塑膠垃圾最終的歸宿就很有可能是流入大海;而且即使是被回收的塑膠材料也只能作為次級的用途降級使用,不能真正回復成原來的原料。因此,她呼籲大家面對塑膠時,在原本的「3R」(「減量 (Reduce)」、「再利用( Reuse)」、「回收 (Recycle)」)原則前面,應該再加上一個「R」,即「拒絕(Refuse)」:盡可能不使用「用過即丟」的塑膠容器,而使用不鏽鋼瓶或者玻璃瓶等等來替代。(8)

TED talk — 戴安娜.科恩(Dianna Cohen):關於塑膠污染的殘酷事實

Dianna Cohen小姐提出了身為個人,可以從自己做起的減少塑膠汙染的行動,而在另外一個方面,身為一個民主社會與全世界的公民,我們還可以,或甚至說應該思考在社會與國家的層面上,應該制定或支持怎麼樣的制度來保護海洋。像「國際自然保護聯盟(IUCN)」的海洋保護法律專家Kristina Gjerde,就在TED演講(2)中,呼喚大家了解海洋的美好與重要性,制定保護公海的國際法,並且推動各國政府的合作,來管理並且避免佔64%的海洋面積,沒有被任何國家的法律所保護的海域受到破壞。還有,我們先前曾經提到兩次的老朋友 — 海洋科學家Greg Stone,致力於推動海洋保護區(相當於陸地上的國家公園或自然保護區)的成立。在他與保護國際(Conservation International)的努力推動、紐澳等周邊國家與大型國際組織的贊助,以及吉里巴斯共和國政府的誠意合作下,研議成立「鳳凰群島信託基金」,計畫籌資給予吉里巴斯禁止漁業捕撈的補貼(而事實上,尚在籌資階段時,吉里巴斯便停止了捕撈)(1);最後終於成立了鳳凰群島保護區(Phoenix Islands Protected Area,PIPA)(11),並且在2010年成為聯合國教科文組織(UNESCO)所指定的世界遺產。

-----廣告,請繼續往下閱讀-----

2002年,正當Greg Stone開始著手推動保育鳳凰群島海域時,發生了因海水溫度異常上升而導致的珊瑚白化現象,有60%的珊瑚死亡(1)。這不啻是一大打擊;然而,這片海域的珊瑚礁卻以科學家所觀察到過最快的速度自然復原,現在已恢復到了往日鳳凰群島的生機。(請見圖八、圖九)Stone認為,這應該歸功於這片海域已成為一片保護區,有許多健康的魚群,海藻也在此落地生根,連帶地讓當地珊瑚礁也長得很好(1)。他評論這一件事情道:「就像一個生病的人,如果有很多種疾病纏身,就很難治癒,可能會死;但如果只感染了一種疾病,那就很有可能治癒。氣候變遷的溫室效應所造成的影響,是(在鳳凰群島海域這裡)唯一會威脅或影響珊瑚生長的因素,因為我們排除了過度捕撈,汙染與海岸開發等各種因素,所以珊瑚得以全速復原。」(1)

面對海洋現在每天都正在遭受全球性、數量龐大的塑膠垃圾汙染問題,雖然規模比鳳凰島珊瑚礁的白化危機還要大得多;在目前看來,身處在一個被塑膠所包圍的世界裡,人們似乎也不太可能一夕之間就停止塑膠的使用,好像前景不怎麼樂觀。但是,就像在Greg Stone的經驗中,他們並不是在事先就能夠預見珊瑚礁快速的復原;他們所做的,只是就預定好的海域保護計畫,一步一步的持續去穩定推動,因此而得到了雖然是意料之外的驚喜,但是卻是符合他們推動保護區初衷的果實。或許對於海洋垃圾,我們雖然很難馬上在實際的執行面上將所有問題根本的解決,但仍然應該一點一滴的持續努力;也許持續地累積正向的條件,有一天可能發生我們目前還沒能預見的轉機。反過來說,如果我們不願意為現在已經浮現的危機進行試圖思考並進行正向的努力,或甚至讓情況更加速地惡化,也許在潛在轉機有發生可能的階段之前,我們就已經先斷送了我們自己的機會了,不是嗎?至少,在下一次使用塑膠瓶時,我們可以想一想,怎麼樣盡可能減少讓現在自己手中的瓶子,有漂流到大海中的機會。想一想那湛藍清澈,在水底看了都刺眼的海水波紋、其中穿梭的龐大魚群、色彩美麗的珊瑚礁,和可愛的綠蠵龜吧!

TED talk — 克莉絲蒂娜·傑爾德:為公海立法

圖八:2002年,鳳凰群島海域發生了因海水溫度異常上升而導致的珊瑚白化、死亡現象。圖片擷取自(1)
圖九:2010年的鳳凰群島珊瑚礁,已恢復了往日生機。圖片擷取自(1),由Brian Skerry所攝影。

【參考資料與註解】

(1) 本段文字與前面兩段的海洋景象描述,是由Greg Stone 的TED演講 – “Saving the ocean, one island at a time”所提及的實際海洋觀察經驗,加以創作、改寫而來。

-----廣告,請繼續往下閱讀-----

(2) Krinstina Gjerde, TED演講 – “Making law on the high seas”

(3) Sylvia Earle, TED演講 – “Sylvia Earle’s TED Prize wish to protect our oceans”

(4) Paul Snelgrove, TED演講 – “A census of the ocean”

(5) Jim Toomey, TED 演講– “Learning from Sherman the shark”

-----廣告,請繼續往下閱讀-----

(6) Jeremy Jackson, TED演講 – “How we wrecked the ocean”

(7) Daniel Pauly, TED演講 – “The ocean’s shifting baseline”

(8) Dianna Cohen, TED演講 – “Tough truths about plastic pollution”

(9) Charles Moore, TED演講 – “On the seas of plastic”

(10) Roz Savage, TED演講 – “Why I’m rowing across the Pacific”

(11) 可參考Wikipedia – “Phoenix Islands Protected Area”條目。網址: http://en.wikipedia.org/wiki/Phoenix_Islands_Protected_Area

(12)補充推薦:Daniel Pauly, TED演講 – “The ocean’s shifting baseline”

文章難易度
活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
海洋盛宴——抹香鯨落
黑潮海洋文教基金會_96
・2023/11/05 ・3099字 ・閱讀時間約 6 分鐘

  • 文 胡潔曦|黑潮海洋文教基金會 鯨豚保育研究員
  • 本文轉載自黑潮海洋文化基金會《海洋盛宴——抹香鯨落》,歡迎喜歡這篇文章的朋友訂閱支持黑潮喔!
圖一、抹香鯨舉尾下潛

編按:本文主要內容與圖片摘錄、翻譯自文獻Three-year investigations into sperm whale-fall ecosystems in Japan,期望在頻繁目擊抹香鯨的 7 月,跟大家分享抹香鯨落的研究。

生存在深海中並非容易的事,由於深海裡缺乏陽光與有機物質,許多生物是藉著海水表層落入深海的有機物質維生。當鯨豚死亡後沉入海底,這段過程、遺體以及過程中所形成的生態系均可被稱為「鯨落」。鯨落可以說是生命的延續之源,而這些殞落至海底的鯨豚有如「金山銀山」,不僅能提供大量的有機物,同時也將許多硫化物帶入海底,造福許多海洋生命,因此也有一句話說:「鯨落,萬物生」。這篇文章透過閱讀國外文獻與整理,希望跟大家分享抹香鯨死亡之後的貢獻!

圖二、世界目前已知的鯨落位置,Implant=人工鯨落  Fossil=鯨落化石  Natural=自然鯨落(Li et al. 2022

故事的開始——集體擱淺在日本的抹香鯨

在 2002 年 1 月,日本的西南海岸發生了一起集體擱淺,共發現了 14 隻抹香鯨,而其中 12 隻抹香鯨被綁上水泥塊後,被當地政府沉入了 Nomamisaki 岬角周邊深度大約兩、三百公尺的海裡,形成了多座人工鯨落。當時有許多學者對於抹香鯨落感到好奇,究竟牠們會吸引來哪些生物?而抹香鯨龐大的遺體會需要花費多長時間分解呢?透過這項研究,或許能讓人們對大型齒鯨落的分解過程更加瞭解。

圖三、編號 12 之抹香鯨在 2003 年之手繪插圖(Fujiwara et al. 2007

事實上,在 2002 年以前,多數的鯨落研究出自於美國的加利福尼亞州外海,並以鬚鯨為主要研究對象,而這些鯨落的深度幾乎都落在一、兩千公尺深,比起這次抹香鯨落群的深度深了非常多。而這次大量出現在日本西南海域的多座人工鯨落有著種種獨特性,包含了:深度淺、是大型齒鯨的鯨落等等,也讓學者們充滿好奇心。

-----廣告,請繼續往下閱讀-----

究竟要如何長期觀察抹香鯨落呢?

閱讀至此,不知道讀者們是否有一項疑問?在兩三百公尺深的海裡,既缺乏可見光,同時也承受著數十倍的大氣壓,在這樣的條件下到底要如何觀察抹香鯨落呢?「ROV——水下探測載具」即是這個研究的一大助手,能夠幫助科學家們突破這些困難,不僅能在深海中蒐集珍貴的影像,也可以完成採集的工作。而在團隊耗費了 3 年運用水下載具追蹤其中的五隻抹香鯨後,他們也有了些有趣的收穫,透過圖四可以看到這段時間抹香鯨的外觀變化。

圖四、編號 12 之抹香鯨 a. 2003 年 7 月  b. 2004 年 7 月  c. 2005 年 7 月利用水下探測載具拍攝影像(Fujiwara et al. 2007

經過數年的追蹤後,研究團隊發現,抹香鯨落歷經分解的速度堪稱飛快!根據 2003 年的鯨落研究,學者將鯨豚分解的過程定義為下述四個階段(Smith and Baco 2003),而第一個階段到最後階段可能會歷時數年甚至到數十年,當鯨豚的遺體越大,可能耗時越長:

  1. 移動清道夫階段(Mobile-scavenger):生物會快速消耗掉鯨豚體表上的肉與脂肪。
  2. 機會主義者階段(Enrichment opportunist):生物開始進駐鯨豚裸露的骨頭及周邊富含營養的底層泥沙上。
  3. 化能自養階段(Sulphophilic):骨骼釋放硫化物,供養海洋中依靠硫化物維生的生物。
  4. 骨礁階段(Reef):在所有有機物質被消耗之後,即會進入骨礁的階段。

註解:上述中文名詞翻譯參考自國家地理頻道及國立海洋科技博物館 鯨落展區。

鯨落最快被消耗掉的部分是身上的肉跟脂肪,而這份文獻研究的 5 座抹香鯨落,肉跟脂肪在經過 1 年之後已幾乎被消耗殆盡;經過 1.5 年之後,抹香鯨落已進入化能自養階段,骨骼開始釋放硫化物質;有些大型鯨落從化能自養階段轉為骨礁期要歷經數十年,根據這項研究發現,部分抹香鯨落竟在 3 年後就能夠進入骨礁期,身上所有的有機質都被消耗殆盡,而這樣的進度相較於過去鬚鯨落的研究是非常快的!研究人員初步推測,可能是因為此處的平均水溫相較其他鯨落研究的海域高,生物分解的速度比較快。

-----廣告,請繼續往下閱讀-----

抹香鯨落上意想不到的生物多樣性

這次的研究共有發現超過百種生物聚集在抹香鯨落周邊,包含軟體動物門、多毛綱與甲殼綱的生物等,在 1.5 年後,貽貝是抹香鯨骨骼上最為豐富的生物類群(圖五)。而抹香鯨落整體的生物多樣性在到達 3.5 年時來到高峰,紀錄中共有八十多種生物出現。

圖五、位在抹香鯨脊椎骨的貽貝(Fujiwara et al. 2007

除了確認抹香鯨的腐化速度之外,研究人員也會在探測載具每次下海時採集底部的泥沙,經分析發現,抹香鯨身體下方泥沙中的硫化物濃度,隨著鯨落分解的時間越久,濃度也會逐漸提高,並吸引來大量仰賴硫化物生存的生物。為了進一步確認周遭環境的生物是否與抹香鯨身上的有差異,研究人員也將抹香鯨 10 米以內與外的生物做了比較,發現鯨落 10 米以外的物種與鯨落上的生物完全沒有重疊,也證明了鯨落的出現確實吸引來許多的生物。

鯨落,萬物生

鯨落的各個分解階段吸引了許多生物造訪,肉與脂肪等在幾個月內快速地被消耗掉,有機碎屑也能讓周邊海底的富含養分,而抹香鯨骨能釋放硫化物數年,部分大型鯨甚至可能長達數十年。「鯨落,萬物生」,在鯨豚生命的最後一章,牠們的身體緩緩沉入海底,成為了大量生物的食物來源。至 2022 年為止,目前世界已知鯨落共有約 160 座,也希望隨科技進步,人們能更深入認識鯨落為環境帶來的影響。

影片分享:美國於2019年在NOAA保護區發現的深海鯨落

-----廣告,請繼續往下閱讀-----

參考資料

  1. Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A. and Okutani, T. (2007), Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology, 28: 219-232.
    https://doi.org/10.1111/j.1439-0485.2007.00150.x
  2. Li Q, Liu Y, Li G, Wang Z, Zheng Z, Sun Y, Lei N, Li Q and Zhang W (2022) Review of the Impact of Whale Fall on Biodiversity in Deep-Sea Ecosystems. Front. Ecol. Evol. 10:885572. doi: 10.3389/fevo.2022.885572
  3. https://oceanservice.noaa.gov/facts/whale-fall.html
  4. https://natgeomedia.com/environment/article/content-6001.html
  5. https://www.soest.hawaii.edu/oceanography/faculty/csmith/Files/Smith%20and%20Baco%202003.pdf
  6. http://hi.people.com.cn/BIG5/n2/2020/0409/c228872-33936490.html
黑潮海洋文教基金會_96
4 篇文章 ・ 1 位粉絲
  黑潮海洋文教基金會,1998年於花蓮成立,是臺灣第一個為「鯨豚與海洋」發聲的民間非營利組織。最初以鯨豚調查為開端,多年來深耕於海洋議題、環境教育與科學調查,如同一股陸地上的黑潮洋流溫暖而堅定,期許每個臺灣人的心中都有一片海洋。

0

0
0

文字

分享

0
0
0
紅紅的葉子要怎麼行光合作用?紅葉和黃葉裡也有葉綠素嗎?——《樹葉物語》
時報出版_96
・2023/10/29 ・2029字 ・閱讀時間約 4 分鐘

顏色會依照我們觀看的對象吸收和反射的光而有所不同。樹葉因為會吸收所有藍色和紅色系光譜,只反射綠色,因此看起來是綠色的,而讓樹葉顯現綠色的東西,便是負責養育生命的葉綠素。

需要光合作用時也只會紅通通的日本紅楓

當然,也有葉子不是綠色的。樹木一生中雖然會變換顏色,但也有一開始長葉就不是綠色的。關於這類樹木,首先想到的便是日本紅楓(Acer palmatum ‘Shojo-Nomura’)。

日本紅楓連剛冒出葉子時也不泛綠色,和它的名字一模一樣,打一開始就很紅。那麼,日本紅楓紅色的葉子裡沒有葉綠素嗎?如果缺少葉綠素,樹木無法行光合作用;若不行光合作用,將無法製造生存所需的養分,那究竟該如何生存呢?

所有樹葉裡都有葉綠素,但是除了葉綠素,還有類胡蘿蔔素、花青素和單寧等各種成分,我們需要從這裡找出頭緒。類胡蘿蔔素、花青素和單寧等成分分別呈現黃色、紅色和褐色,葉子雖然從一開始就具備多種顏色的成分,但在更需要光合作用的時候,葉綠素會上來表面;待過了秋季,逐漸接近無法行光合作用的冬季,其他顏色的成分才會開始活躍,秋楓便是如此。然而,日本紅楓即使在需要光合作用的時期,葉子也只會紅通通的,非常奇妙。

-----廣告,請繼續往下閱讀-----

淺綠色顯露出來的瞬間

圖/wikimedia

日本紅楓是人們培育出來的品種,以做為造景用的觀賞樹木。換言之,日本紅楓並不是在自然狀態下生長的樹木,而是人們為了更長時間觀賞楓樹的紅色葉子所培育的品種,讓它一年四季都能呈現紅色。雖說紅色葉子裡頭同時含有泛綠色的葉綠素,但不管再怎麼看,都看不到綠色。

我再次重申,觀察樹木需要長時間、仔細地觀察。日本紅楓葉子上的紅色氣息轉淡的現象一年大概會發生兩次,分別是開花與果實逐漸成熟時,也就是樹木最需要養分的時刻。這時的日本紅楓葉子會發生非常細微的變化,乍看之下無法得知其差異:仍然泛著紅色,仔細觀察卻能在葉子某些部分感覺到綠色的氣息。

雖然葉子顯現紅色,但葉綠素若不進行光合作用,樹木就無法存活,在開花和結果等需要大量養分的關頭更是如此,這種時候只要仔細確認日本紅楓的葉子,將能感覺到葉綠素行光合作用活動的跡象。葉子上面延展的葉脈或葉柄端的紅色會轉淡,非常顯眼。果實結果和逐漸成熟時也一樣,可以在變淡的紅色之間突然看見綠色。即便葉子是紅色的,葉綠素還是會在它非常迫切需要養分時活躍起來,無怪乎顯現了綠色。

黃金松的樹葉只有黃色嗎?

日本紅楓是人工選育的品種,但自然狀態下也有樹木不是發綠色的芽,好比名為黃金松(Pinus densiflora ‘Aurea’)的樹木。雖然松樹的葉子一年四季都是綠色,黃金松的葉子卻呈金黃色。黃金松是松樹的品種之一,是相當稀有的樹木,它只有下方呈綠色,整體看來葉子是金黃色的。據說從以前開始,只要天氣乾旱,黃金松的金黃色葉子就會變成褐色,梅雨季則變成綠色,對於觀察氣候十分必要,不過這種說法並無科學根據。儘管如此,據說以前農夫們乾脆叫黃金松「天氣木」。

-----廣告,請繼續往下閱讀-----
非常稀有的黃金松是在自然狀態下也會發金黃色、而不是綠色的芽。

韓國曾經發現幾棵自然狀態下的黃金松,特別是慶尚北道蔚珍郡周仁里的黃金松就被指定為地方紀念物,是一株受到保護的珍貴樹木。這棵黃金松曾是預測氣候的標準,村裡亦相傳若發生戰爭,它的葉子會泛紅。

蔚珍郡周仁里的黃金松和旁邊其他樹木的葉子顏色不同,一眼就能清楚看出來。這棵佇立在斜坡上的樹木已有五十歲左右,由於被指定為文化財,四周圍上了柵欄、被確實地保護著。雖然遠處就見得到它神祕的模樣,但務必近距離觀察。必須仔細觀察葉子,才能得知樹木的祕密,知道樹木如何用金黃色的葉子製造養分、使自己生長。

即便植物圖鑑裡記載「除了葉子的基部,其他都是黃色」,實際上再怎麼觀察,仍然很難說是黃色,非要講的話,比較接近綠色和黃色混合在一起的淡綠色。當然,顏色以針葉來說算特別,但不能說是黃色或金黃色。與其說黃金松的葉子是金黃色的,不如說是以綠色為底,黃色顯現得稍微強一點。

無法丟掉綠色的原因

我們談日本紅楓和黃金松,但擁有紅葉或黃葉的樹木不只這些,尤其是觀賞用的培育品種中,還有不少葉子的顏色相當五彩繽紛。然而,不管是哪種樹木,都無法完全丟掉綠色,因為綠色是葉綠素的顏色,而葉綠素是樹木的生命之窗。

-----廣告,請繼續往下閱讀-----

——本文摘自《樹葉物語》,2023 年 5 月,時報出版,未經同意請勿轉載。

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。