Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

外科之花的艱難綻放(7)—大結局

科學松鼠會_96
・2013/07/16 ・6871字 ・閱讀時間約 14 分鐘 ・SR值 602 ・九年級

上回

第四章、絕地中興,柳暗花明

心外科發展到這一階段的特點是,通過常規應用低溫和流入道血流阻斷,可以以最低的死亡率來糾治簡單的心臟缺損,那麼對絕大多數外科醫生而言,又何必冒險進行進一步的體外循環試驗呢。但不幸的是那些目前手術不能解決的複雜的心內畸形,卻恰恰是最需要手術處理的部分,因為他們的病情更重,自然預期壽命更短。

行百里者半九十,也許有人會認為吉本再堅持一下,體外循環機就可能在他的手中得到完善了。但我們無意苛求吉本畢竟他已經為這一事業奉獻了二十餘年的青春,幾乎將體外循環機帶入臨床了實踐,我們的英雄累了。時代需要一位接力者將這項偉大的事業進行下去。目前的失敗只是暫時的,籠罩在心臟外科的悲觀情緒也不過是黎明前最後的黑暗了,那麼,這個將要喚醒黎明托起朝陽的人,又會是誰呢?

當時,體外循環應用於臨床試驗接連遭到失敗,然而相同的技術應用於動物實驗卻能不斷地產生不錯的存活率,這卻是為何?有學者解釋為那些最需要打開心臟做手術的病人,由於其衰竭和複雜的病變不能承受這種操作,而健康的實驗動物則沒問題。這一結論看似擁有無懈可擊的邏輯,他們相信問題並不在於灌注技術或心肺機,而是病人病態的心臟本身導致了失敗,他們不能在承受這種強度的手術打擊之後,還能恢復良好的射血功能,而同樣的打擊在健康的狗身上則沒問題。由於這種「病態心臟」的理論很好地解釋了相同的技術在病人和健康動物身上明顯不同的結果,因而被廣泛接受,甚至導致研究人員質疑心臟直視手術的終極價值。

-----廣告,請繼續往下閱讀-----

通常,理論往往是落後於實踐的,事後諸葛亮似的總結,如果能上升為正確的理論,那麼將反過來極大地推進實踐,如果是錯誤的理論,則將影響甚至延緩實踐的腳步,很不幸,這一「病態心臟」理論屬於後者。

很顯然,作為主帥的吉本,其臨陣易幟對體外循環機的研發事業是個不小的打擊,但即使在如此慘淡的情況下中,仍然有猛士堅持下來。比如吉本的好友,體外循環機的另一位研究者,明尼蘇達大學教授丹尼斯就是其中的一位,他在1955 年 6 月也成功地進行了體外循環下心內直視手術,這是世界第 2 例。但使整個事件發生根本性轉機的卻另有其人,他是同屬明尼蘇達大學的外科醫生沃爾頓‧來裡赫(C. Walton Lillehei,1919——1999)。

如果說在他之前的開拓者們體現了無與倫比的智慧與勇氣的話,那麼來裡赫的所作所為則已幾乎超越了人類想像的極限。1954年這個看起來近乎瘋狂的傢伙居然試圖以患兒的父親作為「心肺機」,用活人交叉循環的方法挑戰歷史上首例室間隔缺損的修補術,他能成功麼?他是怎麼想到這一招的呢?

50年代初來裡赫也想開展有關體外循環的動物實驗,可遺憾的是他沒有人工心肺機的實驗條件,你要造飯,可你居然連鍋都沒有,這不是扯淡麼?當然有人可能會想到,如果餓急了,想把食物弄熟也不是非有鍋不可,你可以採用原始的方法嘛,直接用火烤成不成?那麼人體體外的循環除了人工心肺機而外,還有別的什麼原始途徑麼?我們人類社會再回到原始形態當然是不可能了,但是人之初的形態又是如何的?人不是出生以後才有自己的呼吸的麼?那之前怎麼存活的?

-----廣告,請繼續往下閱讀-----

這一靈光乍現的思路,來自來裡赫的助手莫利(Morley),既然胎兒可以從胎盤獲得氧合血,我們為什麼不能用動物實驗來模擬這種情形呢?這真的又是一個幸運的遺憾!當年布萊洛克因為遺憾地沒能如願以償地建立肺動脈高壓的動物模型,導致了塔西格與其聯手,創立了經典的術式B-T分流。而今,來裡赫因為實驗條件限制這一看似被逼到無奈的遺憾,居然使其迸發出以活體作為「心肺機」這一神奇構想,而這一構想恰恰為已經看似山窮水盡的體外循環的研究,帶來了柳暗花明的一線轉機。

他們用兩條狗進行心臟手術,一條是手術狗,為受體;另一條模擬胎盤的原理當作氧合器,稱為供體。這是一種新的體外循環方法「交叉循環法」。動物實驗進行的較為順利,1953年10月22日第一例交叉循環動物實驗即大獲成功。同時一個意外的發現是,實驗動物的術後恢復如此之快狀態如此之好,是此前用人工心肺機從未有過的。又經過幾個月的系統改進及有關機制的深入研究,成竹在胸的來裡赫認定,在人工心肺機幾乎缺席體外循環人體試驗的關口,這項全新的技術值得進行一項人體試驗。

交叉循環法的原理為,在同樣的時間裡使病人和正常的供體之間交換等量的血流,通過循環泵來控制流量,而心臟的靜脈流入則完全阻斷,以保證可直視下切開心臟。一旦病人與供體建立連接,該病人的身體就可以不斷地得到充分氧合後的血液供應。沒有複雜的機器也不需要調解動態的平衡,因為供體的循環及時自動地承擔著這些重要職能。這就解釋了為什麼實驗動物的術後恢復較以前為快。這一方法至少從理論上似乎既規避了應用低溫和體外循環實驗過程中相關的常見的併發症,且沒有時間限制。

這一想法剛一拋出就引起悍然大波,這對已有的外科實踐體系的是一個極大背叛。讓一個健康的人在手術室裡冒著潛在的危險(不管多麼小)作為供體循環,哪怕只是暫時的,也是不能被接受的,有些批評者甚至說,你們想要創造歷史麼?想要做外科歷史上第一個可能死亡率為200%的手術?

-----廣告,請繼續往下閱讀-----

雖然這些激烈的批評令來裡赫倍感焦慮,然而,箭在弦上不得不發,他還是向其導師歐文‧H‧王更(Owen H. Wangensteen,1899-1981)正式遞交了試驗申請。歐文力排眾議批准了該試驗計畫,他在批准書答覆道:親愛的來裡赫,放手去幹,別的事情你不用操心。短短的一句話,寄託了歐文無盡的期待,在當時,若沒有他的鼎力支持,這一項意義重大關乎心臟外科發展前途的試驗絕不會進行的如此順利。1981年1月歐文‧H‧王更去世後,醫學界對其讚譽有加,評論者認為,明尼蘇達大學能夠在上世紀50年代對心外科的發展做出許多開創性的貢獻,與其英明領導是分不開的。

1954年3月26日是心臟外科歷史上最令人激動不已的日子。來裡赫和他的三個年輕的同事,以患兒的父親作為供體,用交叉循環的方法完成了歷史上首例室間隔修補術,整個手術過程十分順利,父子平安。看台上,一直為自己的愛徒捏了一把汗的歐文,第一個向來裡赫表達了祝賀。

這一幕如果能夠被搬上銀幕,即使是最蹩腳的導演,也足以使影院裡的多數人痛哭失聲。當我知道心外科歷史這一細節時,除了對來裡赫的創見驚訝不已而外,作為供體的父親尤其讓我感動萬分。試想在當時,這一試驗在一片激烈的反對聲中勉強得以實施,手術過程中將會發生什麼,沒有人可以預料的到。當這一對父子在麻醉前深情地對望一眼之後,他們是否有可能活著再見?大愛無言父愛如山,這位勇敢的父親,在這樣一個空前事件裡,為這一箴言做出了最好的註解。

科學,畢竟是人的科學,歷史,永遠將是人的歷史,這一段煙花般絢麗的科學史中,最為耀眼的也許恰恰就是人性不朽的光輝。

-----廣告,請繼續往下閱讀-----

可是,我們是否高興的太早了呢?別忘了,想當初吉本第一次在人工心肺機體外循環下的手術成功之後,就再沒能重複這一結果,同樣的悲劇會再次上演麼?

箭頭為血流方向

第五章、托起朝陽,霞光萬丈

都說孩子是一個家庭的希望,好比初升的太陽,那麼這些為拯救萬千孩子性命而勇敢探索孜孜以求的科學家,無疑就是那修復希望托起朝陽的巨人。

1954年和1955年之間,幾乎是孤軍奮戰的來裡赫團隊通過使用親子之間的交叉循環,為存在複雜心臟畸形的45位兒童施行了直視下的心臟手術。所有這些這些複雜的病變都是靠以前既有的技術無法解決的。全部接受手術的45名嚴重受損的病人中,有28名複雜的心臟畸形得到了治癒,45個循環供體均得以存活,但還是有一例發生了心臟驟停,需要打開胸腔進行心臟按摩,這當然是一重大事故。到1986年,術後30年隨訪的結果為22名(49%)仍然活著,並過著有質量的生活。

-----廣告,請繼續往下閱讀-----

這些顯著的臨床試驗結果,顯然比其非凡的手術技巧更令人吃驚,這使當初吉本暫時失利之後學術界盛行一時的「病態心臟」理論被徹底打破了,心外科開始走出低谷,進入了一個快速發展的階段。

來裡赫所取得的巨大成功,將明尼蘇達大學醫院一下變成了世界心臟外科學的第一重鎮,各地的參觀學習者絡繹不絕,後來這些參觀者中又有人續寫輝煌,這已是後話。但來裡赫卻並沒有被一時的勝利所沖昏頭腦,他清醒地認識到目前這種方法,供體的自我平衡機制,將自動糾正無數不知名的由於全身灌注引起的生理學紊亂,這對於供體的健康來說顯然是存在潛在威脅的。也正是由於這個原因,活體交叉循環技術並沒有得到廣泛開展。因此他預言到:交叉循環的臨床經驗——尤其是對供體的不良影響,使我們清楚它顯然不可能一直作為體外循環技術,為了病人和尤其是供體的安全問題,必將會發展出一種超越這項技術的體外循環措施。

於是,包括他本人在內,許多研究者又重新開始重視人工體外循環的研究,在吉本研究的基礎上,對心肺機做了進一步改進和完善。

不得不得承認,到目前為止,在已被應用到心外手術的技術中,交叉循環是最符合病人生理的技術。放棄一個在生理上近乎完美的技術,轉而採用了一個至少目前看來比交叉循環在生理上尚有不足的技術,來裡赫醫生的這一作為在外科醫學史上是令人歎服的,但又似乎是倫理學壓力之下必然的選擇,你不能總在每次做手術的時候,都讓另一個健康的人冒著一定風險,而且一旦發生重大失敗,真的可能是兩條命都交代了。

-----廣告,請繼續往下閱讀-----

來裡赫的預言很快得到了證實,到1958年的時候,僅僅在吉本第一次體外循環下手術成功的5年之後,畢業於哈佛醫學院的約翰‧韋伯斯特‧柯克林(John Webster Kirklin,1917-2004)即報導了在梅奧診所成功地應用梅奧-吉本設備在體外循環進行的245例手術 。柯克林改進了吉本的心肺機,發展了安全可行可靠的體外循環措施,取代了交叉循環成為心內直視手術的首選方法。想當初吉本對同梅奧診所的柯克林分享這一藍圖是非常猶豫的,因為他擔心由於梅奧診所強大的實力,會先於他完成第一例體外循環下的心臟手術。不過感謝上帝,吉本最終還是和盤托出了他的技術,而最後恰恰是梅奧診所將這項技術的應用推向了極致,為紀念吉本的卓越貢獻,他們將改進後的設備命名為「梅奧-吉本」。如果當時吉本由於一己之私而選擇了保守,這項大業跌入谷底而無法一時中興也未可知。這種胸懷,是那些只知道傳男不傳女傳內不傳外的江湖人士永遠無法理解的。

低溫在此時則已成為心臟手術的常規並行手段,用以減少單獨應用體外循環對人體固有的損害——在血流減少的時間段內保護重要的臟器,如腦、心臟和脊髓。

自此,由於有了體外循環技術這一有力的武器,心外科醫生可以從容地在無血的術野下,對心臟進行精細的矯正與修補,挑戰更複雜的手術,從此成為可能。陰魂不散的比爾羅特魔咒此時才被徹底擺脫了,心外科一掃陰霾,飛速發展,手術適應證範圍不斷擴大。後來甚至出現過三個獨立的研究者,分別在幾乎相同的時期內發展了同一術式,由於無法確定究竟誰是第一個,學界只好把這一手術命名為Damus-Kaye-Stansel手術,排排坐吃果果,你們仨別囉嗦!而這一術式糾正的畸形又絕不簡單——單心室,也即只有2個心房一個心室,這不跟兩棲動物的蛤蟆一樣麼!由於這一手術太過複雜,本文就不再細說了。至今,心臟外科仍是極富挑戰且集中了最多前沿技術的外科分支之一,這一朵最年輕的外科之花,在經歷了無數淒風冷雨之後,終於可以在萬丈的霞光之中,精彩綻放。

第六章、尾聲

儘管心外科此後的發展仍不乏精彩的片段,可故事至此,似乎已可以告一段落,但這些拓荒者的事蹟留給我們的思考卻不應該就這麼早結束。

-----廣告,請繼續往下閱讀-----

在當時,來裡赫所取得的巨大成功,使得來明尼蘇達大學醫院的參觀學習者紛至沓來,這其中有一位來自南非開普敦的外科醫生剋裡斯提安‧巴納德(Christiaan Barnard,1922–2002),他在1967年12月3日的石破天驚之舉,再次續寫了心臟外科的輝煌:人類歷史上第一例同種異體心臟移植獲得成功。這也絕不會是一個尋常的故事……另外,必須要說明的是,人工心肺體外循環這一技術,至今雖已相當成熟,但遠非盡善盡美,更非絕對安全,併發症如中風,凝血功能障礙,對血液成份的破壞等,促使外科醫生開始考慮使用體外循環之外的替代方案,這又將是另一番堅苦卓絕征程了。

我必須要說明的是,這段時期裡對心外科的發展起過重要貢獻的人,絕不僅僅是我在文中提到的幾位,只不過為了方便敘事集中線索,不得不忍痛割愛了一些人物,甚至已經提到的這些大師,由於同樣的原因,也未能將其全部貢獻徹底展開。

以哈肯為例,此人除了在二戰中連續為130個在戰鬥中負傷的士兵取出心臟彈片,嘗試進行心臟閉式手術,為心外科的發展做出了必要的前期鋪墊這一貢獻而外,他還是世界上提出重症監護(intensive care)這一理念的第一人,並建立了世界上第一個重症監護室(intensive care unit,ICU),而今ICU早已遍地開花,成為衡量一所醫院綜合實力的重要指標。ICU的創建,極大提高了重症救護的質量,每年全世界因之而獲得新生的病人難以數計。

我們不妨對這一時期的重要事件進行一下簡單的梳理。1938年格羅斯成功地完成了對動脈導管未閉的結紮,為其贏得了巨大榮譽;但由於其忽略塔西格理論的價值所在,使得塔西格轉而和布萊洛克聯手於1944年確立了B-T分流術,是為心臟手術的破冰之舉,而這一術式得以創立的重要因素之一,居然是由於布萊洛克沒能成功地建立肺動脈高壓的動物模型。在1940年代中期B-T分流術一枝獨秀,許多人前來參觀學習,比奇洛創新的激情在此被點燃,發展了低溫的理念;而他在學術會議上的實驗報告又啟發了劉易斯,使後者得以在低溫的手段下完成了人類歷史上第一次心內直視的手術;從封閉手術到直視下從容細緻的心臟外科時代,低溫扮演著重要的橋樑角色;而且,中度低溫的應用,心臟停跳的誘導,深低溫下阻斷循環也為體外循環的使用留下了寶貴的遺產。而在低溫手段在心臟外科方面已取得優異的初步戰果,很多外科醫生駐足不前的情況下,吉本卻在重重困難之下,歷盡二十年辛苦,為心外科的發展,邁出了至為關鍵的一步——將人工心肺機帶入了臨床實踐。

雖然,體外循環機的最終確立應用是由來裡赫和柯克林等人完成的,雖然所有文中提到的人物都在這一歷史進程當中發揮了重要作用,但筆者仍然認為,若以功勞大小計,吉本是當之無愧的第一功臣。

吉本作為一個外科醫生,最大的與眾不同之處在於他對理論思維的追求,他認為在現代要做一個傑出的外科學家,科學的頭腦、紮實的理論基礎、廣泛的新知識,是比靈巧的雙手更為重要的成功因素。對基礎學科知識的廣泛涉獵,使他高屋建瓴,能夠敏銳地發現當代醫學所面臨的最關鍵的挑戰。惟其如此,吉本才能在對個人而言漫長的、近20年的時間裡愈挫愈奮,默默地承受著世人的誤解、諷刺和打擊,成就了這樣一番開拓性的偉業。

他的悲劇性在於,由於時代的侷限,他第一次手術的成功並沒有很快得到認可,學術界也並沒有將其宣佈為一重要事件——其重要性是後來逐步呈現的。我們現在知道該成就作為外科及醫學上的一大進展足以和麻醉及抗生素的出現相提並論。多年以後,當諾貝爾獎金委員會請 Clarence Dennis 與 Jonathan Rhoads兩位教授提交醫學獎金候選者名單時, 兩人不約而同都提吉本為候選人。這一獎項對吉本來說真的應該是名至實歸,但遺憾的是吉本已於1973 年2 月5 日逝世,委員會以授獎於死者未有先例為由,拒絕接納。如此重大的醫學領域上的成就竟與這麼重要的「炸藥獎」失之交臂,誠屬一大憾事。但是我想,縱使吉本泉下有知,他也未必會為自己沒能獲得這個勞什子「炸藥獎」而有太多遺憾,畢竟,由他開創的事業後繼有人,這一技術終於走向成熟,大量的病人因此獲救,這些,已足以讓這位居功至偉的無冕之王含笑九泉了吧。

但是,這些遺憾也說明,心臟外科這種極具挑戰性的探索,是不大可能由一到兩個天才就可以完成的,也注定了其過程是不會一帆風順的。吉本嘔心瀝血二十餘年,中途因連續的挫敗而易幟,使得來裡赫和柯克林嶄露頭角,這也許恰如格羅斯錯過了塔西格理論,而比奇洛止步於低溫措施,這種看似機緣巧合的遺憾,背後卻乎隱含著某種必然的歷史邏輯——心外科的發展史注定了將是群星閃耀,不容爾等尊榮獨享。

來裡赫亦是筆者十分欽佩的人物,似乎除「天才」二字之外無以形容其卓越,他的成功與其說是由於其不懈的努力和幸運,倒不如說因為他那敏銳的直覺或者說是對事物本質的深刻洞察力,誠然這種洞察力常常得益於對前人思維方式的突破,但這絕對是一種似乎與生俱來的高級的創造性思維能力——那些頭緒紛繁表面上看來無法解決的難題,其背後往往隱藏一個異常簡單的解決方法。也許只有來裡赫這樣的天才,在能當時軍心動搖一片悲觀的嚴峻形勢下,以「交叉循環」這一近乎瘋狂的天才構想扭轉乾坤,中興殘局。除了在前面提到的貢獻而外,他還對心臟起搏器的更新起到了極關鍵的作用,並一手成就了赫赫有名的美敦力公司的創業傳奇(關於心臟起搏器及美敦力公司的故事,我可能會在日後詳細寫)。

但即使天才如來裡赫,當其回顧心內直視手術起源時,情緒上仍不免帶有強烈的時代印記:

無數的失敗,失望,挫折和障礙,天然的,人為的。唯一的解決辦法是混合了堅持和固執的信念。

(There were innumerable failures, disappointments, frustrations, and obstacles-nature’s as well as man’s. The only solution was a mixture of persistence and stubbornness.)

全文完。

作者聲明:未經授權,禁止任何形式的轉載。 

PS:如有續集,純屬正常。目前完成的這部分文字,已被讀庫收稿,待該期出刊時,喜歡此文兼喜歡讀庫的讀者可予收藏。

關於本文

轉載於科學松鼠會 外科之花的艱難綻放系列,作者李清晨

-----廣告,請繼續往下閱讀-----
文章難易度
科學松鼠會_96
112 篇文章 ・ 6 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
征服極端低溫!具有超強耐寒能力的細菌:冷紅科爾韋氏菌——《細菌群像》
麥田出版_96
・2023/03/10 ・1718字 ・閱讀時間約 3 分鐘

  • Colwellia psychrerythraea 
  • 冷紅科爾韋氏菌
  • 形狀:小桿狀
  • 顏色:淺紅色
  • 長:2.5 至 3.5 微米
  • 直徑:0.5 微米
  • 前進:使用鞭毛
冷紅科爾韋氏菌。圖/《細菌群像》。

攝氏 –196 度的世界

據當今研究結果所知,在生命出現的早期,地球上炎熱期與冰凍期交互出現,前者平均溫度可達攝氏五十度,後者溫度可低至地表完全凍結。火山爆發及隕石和小行星的撞擊,使地球溫度升高,經由化學反應及後來出現的生物反應消耗大氣層中的二氧化碳,又使地表變冷凍結。

對大多數的生物來說,今日地球是個既濕又冷的家。地表面積超過百分之七十全是海洋,其中三分之二又是寒冷的深海帶,終年溫度只有攝氏二至三度。地表上所有水域裡,淡水僅占百分之二點五,溫度卻也沒有太大差別:百分之九十的淡水,都儲存在極地冰塊及散布地球各處的冰河裡。

自人類開始定時測量並記錄溫度後,最低溫的紀錄是在南極測得的攝氏零下八十九點二度,不過那裡的溫度也從未上升到比結冰點還高。比較重要的是,有些地方雖有溫暖期,但在夜間或冬天會變得異常寒冷,像亞洲一些地方最高溫可達攝氏四十九度,但低溫時也會降到零下五十度。因此不難想像,為何這麼多的細菌都具有高溫差環境的適應力。

所有在低溫環境仍然活躍的細菌中,冷紅科爾韋氏菌特別引人注目:這種微生物在攝氏零下十度還可四處遊走,在攝氏零下二十度還能繼續生長分裂繁殖。甚至在攝氏零下一百九十六度超低溫環境,研究人員還可觀察到其新陳代謝的運作。

-----廣告,請繼續往下閱讀-----

冷紅科爾韋氏菌能在液態氮(這可是能將花朵瞬間凍成易碎玻璃的物質)中將胺基酸吸收並用來組成自己的細胞。此特性要歸功於它的保暖聚合物及在細胞外作用的酵素,讓它被包覆在網狀的分子結構裡,就像穿了一件毛衣,保護其免於水分形成整齊的冰晶結構。耐寒細菌的細胞壁結構類似液晶,在極冷和高壓下仍然可以保持液態,這也解釋了為何它同時也耐高壓。

掌握低溫生物技術

科爾韋氏菌屬發現於一九八八年,發表研究結果的作者建議以美國微生物學家麗塔.科爾韋(Rita Colwell)之名來命名,以示敬意。科爾韋生於一九三四年,在一九六○年代發現沿海水域有霍亂弧菌,而且常寄生在以藻類為食的浮游性橈腳類[1]動物上。

在氣候溫暖或養分過剩導致藻類大量繁殖時,就會吸引這些細小的甲殼類動物前來,細菌也就隨之而來。科爾韋發現這項事實後,立即成立安全用水供應網,設法以盡可能簡單的工具,例如自造的過濾器,防止因飲用水造成的傳播感染。

此後,她還與其他伙伴一起創立 CosmosID 公司,以期快速檢驗出環境樣本中的細菌。為了向她致敬,南極一座山塊[2]就以她的名字命名。冷紅科爾韋氏菌的種小名 psychrerythraea,則由希臘文 psychros(冷)及拉丁文 erythraeus(紅色)組成,因這個細菌嗜寒並含有紅色色素。

-----廣告,請繼續往下閱讀-----
科爾韋氏菌被應用於許多生物技術上。圖/envatoelements

冷紅科爾韋氏菌也可以在無氧的環境中存活,還可利用各種結構簡單或結構複雜的有機化合物做為養分。由於這種細菌能分解很多種含氮化合物,甚至還能利用硫來產能,因此相當適合利用它在寒冷地區處理環境污染問題。

除此之外,此種細菌也可能促進新疫苗的發明。科學家將病原菌重要的代謝基因替換成冷紅科爾韋氏菌的代謝基因,得到以下結果:病原菌在低溫下正常生長,但在常溫時停止生長,細胞逐漸死亡。這種弱化後的病原菌可用在活體疫苗,使身體在不受危害的狀況下產生足夠的免疫力。此法已在動物實驗中證實可行。

註解

  • [1] Copepoda,橈腳類或譯橈足類,海洋中數量眾多的一群甲殼動物。
  • [2] massif,又稱地塊,地質學中的一個結構單元,比構造板塊要小。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
麥田出版_96
27 篇文章 ・ 15 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

1

6
1

文字

分享

1
6
1
低溫也是一種過敏源?寒冬外出小心「寒冷性蕁麻疹」
careonline_96
・2021/12/14 ・1470字 ・閱讀時間約 3 分鐘

天氣冷颼颼!想賞雪追雪小心危「肌」重重

12 月份氣溫驟降,過敏一族在這時候精神特別緊繃,特別是「寒冷性蕁麻疹」患者更容易因為未注意保暖,導致蕁麻疹發作。

其中「寒冷性蕁麻疹」屬於物理性慢性蕁麻疹,此類蕁麻疹患者通常對「低溫」敏感,只要稍微接觸如雪、冰水、冷空氣亦或是短時間內室內至室外溫度急速下降,即會產生風疹塊,導致全身紅腫、灼熱、發癢,嚴重時喉嚨和舌頭腫脹會影響呼吸,甚至少部分患者可能會引起全身性過敏反應而暈倒、心跳加速、血壓降低,皆會有危及生命的可能。

寒冷性蕁麻疹

 曾有位罹患「寒冷性蕁麻疹」男童,在學校上游泳課時因水溫較低,才剛跳進水中便馬上引發蕁痲疹,導致全身上下都佈滿紅色膨疹,隨後連呼吸道也跟著腫起來,幸好迅速就醫,症狀才穩定下來。

卓玉麗皮膚專科診所院長卓玉麗醫師建議「寒冷性蕁麻疹」患者除了需定時服藥,最好在知道會遇到冷因子一至兩小時前先服用抗組織胺藥物,同時也做好保暖、避免室內外溫差,冰水、冰冷食物等也需忌口,特別是冬季追雪活動盛行,也建議「寒冷性蕁麻疹」患者應避免前往。

-----廣告,請繼續往下閱讀-----
寒冷性蕁麻疹的治療與預防

 卓玉麗醫師表示目前蕁痲疹的治療以「新型第二代抗組織胺」為主,過往傳統的第一代抗組織胺藥物,雖可有效止癢、並阻止微血管擴張,但時常會造成口乾舌燥、嗜睡、頭昏無力等狀況,少部分患者甚至會出現視力模糊等副作用,雖為短效型藥物但其副作用在少數患者體內可能會持續很長時間,嚴重影響患者日常生活,使服藥順從性降低導致無法有效改善症狀。

以卓玉麗醫師的門診經驗來看,「新型第二代抗組織胺」其副作用發生機率大約只有百分之一,不僅有效改善因為第一代藥物引起的嗜睡、疲倦、注意力不集中等問題,更重要的是對於肝腎功能不佳的患者也不需減少劑量,為目前安全性高的藥物,且藥效在 1 小時內便能夠達到治療效果,並可持續 24 小時,減少患者的服藥次數,事半功倍。

根據臺灣皮膚科醫學會新版診治共識指示,如一般藥物治療仍無法讓病人症狀得到控制,即可將抗組織胺藥物最高調至四倍用量,若調高藥物劑量二至四週後仍然無法改善症狀,即可考慮使用生物製劑或免疫調節劑進行治療。卓玉麗醫師提及現今的治療流程簡明扼要,且因新一代藥物的發現及投入市場,使得蕁麻疹的控制更為有效。

除了配合醫師處方外,也提醒寒冷性蕁麻疹的患者千萬不要只在有症狀時才服藥,不僅無法控制症狀還會使先前的治療前功盡棄,必須將蕁麻疹看成是慢性病一樣治療,有耐心、信心配合醫囑長期服藥,方可穩定控制。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1