0

0
0

文字

分享

0
0
0

為何水星是顆硬橘子,而不是軟桃子?

臺北天文館_96
・2013/05/17 ・1414字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

我們太陽系最內側的行星—水星,其內部結構類似橘子,龐大的鐵核如同橘子果肉部分佔了橘子的絕大部分體積,而地函和地殼僅如橘子皮般薄薄一層。這個現象讓天文學家疑惑了數十年,因為根據傳統行星形成理論,水星不太可能會產生比例這麼大的核心。相較之下,地球和其他類地行星的內部結構,如一顆桃子般,讓平均密度因而低了一些。

天文學家推測水星之所以會是橘子狀結構,可能是因為曾遭受巨大撞擊而使得矽酸鹽地函被剝離,也或許是因為它的外層因遭受太陽強烈炙烤而被蒸發消失。但過去幾年的信使號太空船(Messenger)探測結果發現水星地殼含有像鉀這樣的揮發性元素;如果它曾被劇烈撞擊或被太陽炙烤而蒸發,那麼根據行星形成理論來說,不太可能存有這些揮發性元素。

其實不只水星,天文學家近來觀測系外行星的結果顯示水星這種橘子結構並非獨一無二,另有兩顆已知密度的小型系外行星—Kepler-10b和Corot-7b,其密度都比預期的還大很多,顯示它們應該和水星一樣屬於有個超大金屬核心的橘子狀結構,而且也和水星一樣很靠近它們的母恆星。現在,有個新理論可以一次滿足所有條件,解釋這些怪咖的異狀。兇手,就是陽光或星光帶來的熱。

當氣體分子碰撞到一顆高溫塵粒時,會將塵粒的熱帶走一部份,並以比碰撞前還快的速度離開。這個過程讓塵粒被推動了一下。德國杜伊斯堡艾深大學(University of Duisburg-Essen)Gerard Wurm等人計算這個所謂的「光致漂移力(photophoretic force,或稱光泳力)」會如何影響旋繞恆星運動的塵粒。

-----廣告,請繼續往下閱讀-----

Wurm等人根據計算結果發現:金屬塵粒由於會傳導熱能,讓整個塵粒的溫度保持一致,受到來自各個方向的推擠之後,並不會被推到遠離恆星的地方。但是那些密度小一些的矽酸鹽塵粒因會隔熱,面對太陽或恆星的那面會被加熱而另一面的溫度卻沒提升,使得受到氣體分子推擠時,熱的那一面會被推得比冷的那一面多,長期下來將使得原始太陽系中的塵粒被分類,金屬塵粒留在靠近恆星或太陽的地方,密度較小的塵粒則被推到較遠之處。從這些塵粒中誕生的行星的組成成分和結構因而有所差異。如此一來,便可解釋為何像水星、Kepler-10b和Corot-7b的內行星密度會如此之大,離中央恆星愈遠的行星,金屬比例就會愈少。

光致漂移(photophoresis)並不是多新的點子。在約一世紀以前,利用真空室(vacuum chamber)進行研究的物理學家就不停地擔心光致漂移可能產生的影響,因為當時抽真空的幫浦效力不佳,而光致漂移力又只會出現在僅殘存非常少氣體的不完美真空狀態下。後來幫浦設計漸趨改善,物理學家終於能將光致漂移力這回事通通拋開,不必再考慮要將之計算到實驗結果中。光致漂移這個概念消失了約100年之久。

華盛頓卡內基研究所(Carnegie Instition of Washington)Larry Nittler指出:他很欣賞用光致漂移來解釋水星謎題的這個點子,但Wurm等人的理論並不具決定性,沒辦法完全剔除地函剝離的解釋方式。Nittler建議Wurm等人還得再接再厲,將太陽系形成過程帶入光致漂移效應,並將模擬所預測的組成成分,和信使號實際測量結果加以比較。

Wurm等人則計畫來場天然的模擬,不是透過電腦,而是在真實世界進行。他希望能在德國柏林一座110米高的高樓頂端扔下一個內含金屬和灰塵的密封容器,以模擬太空無重力狀態;然後用紅外雷射掃射這個向下掉落的容器,最後再檢視容器中的塵埃和金屬是否有如預期般的分離。如果為真,那麼到時就能大聲說:喔~耶!橘子對桃子,1比0!

-----廣告,請繼續往下閱讀-----

相關論文可參考 arxiv.org/abs/1305.0689。

資料來源:Why Mercury is a hard orange, not a soft peach[2013.05.13]

轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
重力理論的演進與環繞黑洞的恆星
科學大抖宅_96
・2020/05/26 ・2647字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

十七世紀末,牛頓提出的萬有引力理論象徵現代天體力學的開始;人們利用物理原理來描述天體運行,並藉由天文觀測逐步修正理論或計算方法的缺失。以天王星的發現為契機,科學家開啟了一連串對行星軌道的研究;這些事件不但成為天體力學發展史的重要標誌,最終竟促成重力理論的演進,甚至延續到現今,反應在我們對黑洞的觀察上。

這一切,都要從 1781 年,英國天文學家赫雪爾(William Herschel,1738-1822)在自家庭院,從望遠鏡中看到一顆彗星說起……

天王星的詭異行徑

在赫雪爾將發現回報給皇家學會後,其他科學家也紛紛對這顆彗星進行調查。很顯然的,它似乎沒有彗星尾巴,而且運行軌跡較接近圓形,不像其他彗星以非常扁的橢圓軌道繞行太陽;與其說是彗星,它更像是在土星軌道之外環繞太陽的行星──這就是天王星的發現。

儘管已驗明正身,天王星仍然困惑著接下來數十年的天文學者:它的實際軌道和牛頓萬有引力理論的預測並不相同。這是牛頓理論的失敗嗎?還是觀測錯誤了呢?1846 年,法國天文學家勒維耶(Urbain Le Verrier,1811-1877)利用數學計算提出預測:存在某個未知星體影響了天王星的運行,造成理論和觀測的差異;他也指出該星體的軌道、質量和位置大約為何。

一陣子之後,柏林天文台收到勒維耶的報告,便馬上著手進行未知星體的搜尋工作;只花不到一個小時,海王星就被找到,與勒維耶預測的位置相差不到一度──史上第一次,單純憑藉數學計算發現新行星[1]

奧本‧勒維耶(圖片來源

水星的運行軌道也存在異常

隨著海王星的發現,牛頓萬有引力理論可說獲得空前勝利。然而,天文學家拿重力理論來推估行星運行的嘗試並未到此為止。1859年,勒維耶再度出擊,聲明水星軌道的進動也跟牛頓萬有引力理論的計算有所出入。

在理想狀況下,依據牛頓萬有引力理論,水星環繞太陽的運行軌道應該要固定不變;然而在實際上,因為受到其他行星的重力拉扯(和另外一些次要因素),水星軌道的近日點(以及軌道本身)會緩慢產生變化──這稱為水星的近日點進動。

不止水星,其他行星也都會有進動;只是水星距離太陽最近,進動效應最明顯。圖為地球繞行太陽的軌道進動示意;進動效應被刻意放大。(圖片來源

勒維耶分析了從 1697 年到 1848 年的水星觀測資料,發現水星的近日點進動,與用牛頓萬有引力理論考慮其他行星的影響所算出來的進動數值,每世紀差了三千六百分之三十八(38/3600)度[2]──這是多麼微小的數值,卻又真實存在!

因為之前海王星的成功經驗,勒維耶猜想:介於太陽和水星軌道之間,可能存在未曾發現過的星體,影響了水星的運行;他將其命名為瓦肯星(Vulcan)[3]

無奈地,這一次任憑天文學家花費幾十年尋找,甚至勒維耶也已去世良久,瓦肯星始終不見蹤影;而水星近日點進動問題便懸而未決,延續到二十世紀。在 1915 年,愛因斯坦才利用廣義相對論成功將此問題劃上句點。

愛因斯坦在1915年的論文中,運用廣義相對論解決了水星的近日點進動問題。(圖片來源

根據我們目前所知,水星的近日點每世紀會移動約 574/3600 度,其中牛頓萬有引力效應佔了 532/3600 度,而廣義相對論造成的效應幾乎剛好就是兩者之差。廣義相對論針對牛頓萬有引力定律所描述的重力,做出了細緻的修正──這個修正在大多數狀況下,微小到可以忽略;只有在水星近日點進動這樣的例子,差異才會顯現出來。可以說,水星近日點進動問題的解決,是幫助廣義相對論得到世人認可的重要原因之一。

廣義相對論的黑洞測試

科學家拿星體運行來測試重力理論的故事就到此為止了嗎?非也。既然原本得到廣泛驗證的牛頓萬有引力定律,因水星近日點進動現象而被找到缺陷,那麼現在大獲全勝的廣義相對論,自然也有可能在某種特殊環境下暴露弱點──科學家於是把腦筋動到了黑洞頭上。

黑洞堪稱宇宙裡數一數二極端的天體,龐大的重力吞噬一切,無疑是測試重力理論的理想選擇。就像水星繞行太陽會產生進動,是否,繞行黑洞的星體,其軌道也會有進動現象呢?又是否完全可以用廣義相對論來解釋?

針對廣義相對論的正確性問題,一群科學家團隊花了二十七年,觀測環繞無線電波源人馬座A*(Sagittarius A*)運行的恆星S2,並於今年(2020)四月,在《Astronomy & Astrophysics》期刊發表最新成果

人馬座A*位於銀河系中心,距離地球約兩萬六千光年,質量估計為四百多萬倍太陽質量,據信極可能是超大質量黑洞;環繞於外的 S2 具有十多倍太陽質量,與人馬座A*的最近距離是十七光時(海王星到太陽距離的四倍),軌道週期為 16 年(海王星軌道週期是 165 年)。研究發現,S2近心點(pericenter,最靠近重力中心的點)的進動約為每軌道週期 12/60 度,與廣義相對論的預測相符──即使在重力如此強大的環境,廣義相對論依舊通過試煉。

藝術家描繪的S2繞行人馬座A*示意圖;為了清楚顯現 S2 軌道因為進動而逐漸改變位置,進動效應被特意放大。(ESO/L. Calçada

本次研究的意義

儘管沒有發現廣義相對論的破口,這次的成果仍然別具意義:它是人類第一次確認以黑洞為中心的進動現象;再者,若人馬座A*附近存在某些看不見的物質(如暗物質,或其他小型黑洞等等),科學家也能依據數據給出嚴格的質量上限。可以肯定的是,隨著觀測技術的發展,我們對於宇宙、或者黑洞的理解,將持續進步;說不定哪天,還真能發現廣義相對論的問題呢。

參考資料

註釋

  • [1] 實際上,勒維耶計算出的海王星軌道,與真正的海王星軌道仍有一些差距。但這並無礙於發現海王星的偉大成就。
  • [2] 多年後,其他科學家重新評估牛頓萬有引力理論和實際觀測的差距,得出每世紀三千六百分之四十三(43/3600)度的數值,跟現代觀測吻合。
  • [3] 就跟《星際爭霸戰》(Star Trek)裡的瓦肯星同名。不過可以確定勒維耶並不是因為看了《星際爭霸戰》才這麼命名的。
科學大抖宅_96
36 篇文章 ・ 1847 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/