Loading [MathJax]/extensions/MathZoom.js

0

0
0

文字

分享

0
0
0

隱馬可夫模型:探索看不到的世界的數學工具

活躍星系核_96
・2013/06/26 ・2460字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級
相關標籤: 馬可夫模型 (1)

-----廣告,請繼續往下閱讀-----

文 / T.S.Yo

這篇要討論的可不是哲學議題,而是希望以一個「數學工具」的角度來看隱馬可夫模型Hidden Markov Model, HMM)是什麼,它的背後假設、長處與限制,以理解這樣的工具可以拿來做什麼用,而不是只與特定的應用綁在一起。

Hidden Markov Model 是機器學習(Machine Learning)領域中常常用到的理論模型,從語音辨識(Speech Recognition)、手勢辨識(gesture recognition),到生物資訊學(Bioinformatics)裡的種種應用,都可以見到這個工具的身影。

既然名字裡有「馬可夫」,想當然耳的,這又是一個馬可夫模型Markov model)的延伸。之前在介紹 n-gram 的文章裡已經提到過,馬可夫模型所描述的,是一連串事件接續發生的機率:

-----廣告,請繼續往下閱讀-----

馬可夫鏈,用白話說,就是同類型的事件(不同的狀態)依序發生的機率,舉例來說,假設天氣有三種狀態:「晴天」、「陰天」跟「雨天」。如果昨天是雨天,那麼今天是「雨天」的機率,會跟昨天是「晴天」而今天是「雨天」的機率有所不同,這是因為我們相信天氣現象在時間上有某種連續性,前面發生的狀態會影響到後面發生的狀態,而馬可夫模型就是描述這種前後關係的數學語言。

那麼,「隱馬可夫模型」,顧名思義的,約莫就是有什麼東西「隱藏」起來了。我們沿用之前天氣的例子,假設我因為腳受傷,必須住在一個房間裡,看不到外面的天氣(我知道這聽起來不太合理,但是我實在不想把自己關在禁閉室裡,所以請通融一下),但是我可以看到我隔壁房間的室友每天從事的運動:「跑步」、「健身操」或是「游泳」三者之一。

如果把室友每天從事的運動項目記錄下來,就是他「運動」這個事件的馬可夫鏈,這是我可以觀察的到的現象。然後,我又依照過去的經驗,知悉在每種天氣狀況下,他從事各項運動的機率,那麼我是不是可以透過我的觀察和知識,去推測每天的天氣?

在這個例子裡,有兩個事件的序列:一個是我觀察得到的,室友每天所從事的運動項目;另一個是我看不到的,也就是對我來說是隱藏的,外面每天的天氣。由於我知悉這兩個馬可夫鏈之間的關係,所以我便可以由其中一個馬可夫鏈的狀態,去預測另一個馬可夫鏈的狀態。而「隱馬可夫模型」,便是描述這樣的兩個序列的關係的統計模型。

-----廣告,請繼續往下閱讀-----

簡單的說,「隱馬可夫模型」提供了一套數學的理論以及工具,讓我們可以利用「看得到的」連續現象去探究、預測另一個「看不到的」連續現象。

當然,這裡的「看不到」並不表示真的無從觀察,以前面所舉的例子來說,我在腳沒受傷的時候,還是可以到外面去觀察天氣的,只是在某個特定的條件之下,天氣對我來說被隱藏起來了。

文章的附圖,講的是柏拉圖的洞穴預言Allegory of Cave),講的是「我們看到的世界」跟「真實的世界」的關係,或許恰好可以用來比喻一下隱馬可夫模型的作用。

我們還可以進一步用「語音辨識」當做例子,來說明 HMM 的用處。

-----廣告,請繼續往下閱讀-----

在語言學上,我們可以把人說話發出的聲音分成各種音節syllable),所以理論上,我們如果有一段錄音,只要能分辨每一個音節發的音是哪些母音與子音,就能夠把這個人講的話辨識成文字。

任何「理論上」可行的事情,必然伴隨著實務上的困難。

這種「音節對應」的工作看似容易,但是實際上會遇到很多「模稜兩可」的情況。以中文為例,兩個三聲的字連著念,前面的會讀成二聲,加上同音字、破聲字,同字的語音與讀音…等等,都增加了這個「分辨」過程的難度。

那麼,HMM 是怎麼跑進來的呢?試想,「語音」,是一連串的「音節」,而我們想要辨識成的文字,則是一連串的「字」;對語音辨識系統而言,語音這個「音節序列」是看得到的訊號,而系統想要做的是推測出與其相對應的,看不到的「文字序列」,所以正好是 HMM 所模擬的狀況。隱馬可夫模型在語音辨識的的應用,大抵始於1970年代晚期的 IBM 計畫(Jelinek),時至今日,我們生活中可以看到的各種語音辨識系統,例如 Apple 的 siriGoogle 的 voice search,微軟前不久在北京展示的中英同步口譯,背後都是以 HMM 作為基礎技術。至於技術的細節,有興趣可以參考 MIT 的教材,這裡就不討論了。

-----廣告,請繼續往下閱讀-----

生物資訊學(bioinformatics)是另一個大量使用到 HMM 的領域,從 DNA 序列的比對到演化歷程的推論,只要是跟基因序列有關的,幾乎都看得到 HMM 的應用。以DNA定序為例,一段採集到的DNA序列,包含了「外顯子」(exon)和「內隱子」(intron)兩種段落,兩者在細胞複製上有不同的功能,但都是由眾多的基因(gene,有A, T, C, G 四種)排列成的序列,因此在一串看得到的基因序列中,要如何標記出哪一段是「外顯子」,哪一段又是「內隱子」,這些看不到的段落,也是 HMM 可以發揮作用之處。簡單的說,「外顯子」和「內隱子」各自包含 A,T,C,G基因的比例不同,於是我們可以利用 HMM 相關的演算法,找出哪一個基因是「外顯子」和「內隱子」的起點或終點。

現實中,股票的價格變化也是一個「序列」,這是另一個充滿經濟誘因的預測標的,想當然耳的,也有不少人把 HMM 運用在預測股價的狀態上,不過文獻就不如前述兩個領域那麼豐富了。

隱馬可夫模型當然也有它使用上的限制。例如,觀測與模擬的現象必須是「序列」(或者該說是馬可夫鏈),兩個序列之間的關係要夠明確等等,否則很容易就變成用十字螺絲起子去轉六角螺絲:或許可以運作,但是結果不盡然是原本想要的。

如果有這樣的數學工具,你會想要用來預測什麼看不到的現象呢?

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。