0

0
0

文字

分享

0
0
0

Google 搜尋預測、拼字檢查、與即時翻譯背後的統計模型:n-gram

活躍星系核_96
・2013/06/17 ・2112字 ・閱讀時間約 4 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

文 / T.S.Yo

n-gram, the final frontier, 喔,不是,更正:是一種統計模型,源自於夏農Claude Shannon)的資訊理論information theory),而主要應用在「自然語言處理」(natural language processing)跟「基因序列分析」(genetic sequence analysis)的研究上。

馬可夫鏈與 n-gram

簡單的說,這個統計模型就是一種馬可夫模型Markov model)。好吧,我承認這樣講沒有比較簡單。馬可夫鏈,用白話說,就是同類型的事件(不同的狀態)依序發生的機率,舉例來說,假設天氣有三種狀態:「晴天」、「陰天」跟「雨天」。如果昨天是雨天,那麼今天是「雨天」的機率,會跟昨天是「晴天」而今天是「雨天」的機率有所不同,這是因為我們相信天氣現象在時間上有某種連續性,前面發生的狀態會影響到後面發生的狀態,而馬可夫模型就是描述這種前後關係的數學語言。

一個完整的馬可夫模型,需要列舉所有狀態的條件機率。以前面天氣的例子來說,就是要列舉出「今天是晴天,明天會是晴天、陰天、雨天各自的機率」,以及「今天是陰天」和「今天是雨天」而明天各會是三種天氣的機率,總共有九個。如果我們把天氣的分類分得更細,種類更多,那麼這個馬可夫模型就會變得更複雜。

然而,從邏輯上我們可以推測,「前天的天氣」可能影響到「昨天的天氣」,進而影響到「今天的天氣」以及「明天的天氣」,所以前面所提到的馬可夫鏈,其實是假設了「只有前一天的天氣會影響到之後的天氣,之前的都無關緊要」,這就是最簡單的「一階馬可夫鏈」。如果我們放寬了這個假設,把「前N天的天氣」都納入考慮,那麼就成了「N階馬可夫鏈」,這是也是馬可夫模型的複雜形態之一。

-----廣告,請繼續往下閱讀-----

當然,數學模型描述的是抽象層次的符號,所以前面例子裏的「天氣」可以代換成其他任意「有前後關係」的序列(sequence),例如「文字」。

讓我們繼續拿「天氣」當作例子,不過這次講的是「天」跟「氣」的關係:當「天」這個字出現的時候,後面接著是「氣」這個字的機率是多少?相信說到這裏,有用過各種中文輸入法的人,大概都已經知道關於這種「關係」的知識應用到生活中的哪些地方了。而這種知識的基礎,「字頻」跟「詞頻」,也是構成 n-gram 模型的基礎。

中文的「字」是文字的最小單位,也就是 n=1 的狀況,稱作 unigram (uni 即「單一」),一種語言的「字頻」也就是該語言的 unigram model。從馬可夫鏈的角度來看,因為前後的關係項為零,這是一種「0 階馬可夫鏈」。

然後是「二字詞」,就像前面說的「天氣」,「天」後面接著各種字的機率,構成了 n=2 的狀況,bigram(bi 是「二」的字首),這也是一種一階馬可夫鏈:前一個狀態跟下一個狀態的關係。依此類推,我們可以進一步去建立 n=3,4,5… 的統計模型,而這些模型的集合,就是所謂的 n-gram 模型。

-----廣告,請繼續往下閱讀-----

與傳統馬可夫模型不同的是,n-gram 裏每一個 gram 的可能狀態(在天氣的例子裏是「天氣類型」,在文字的例子理則是「字的種類」)通常很多,接近無限大。以前面的例子來看,我們可以把天氣分成簡單的幾類,但是中文裏的「字」,常用的就有 3000-5000 個,就算不計那些罕用字跟古字、自創字,要描述一個 5000×5000 = 兩千五百萬個機率的 bi-gram 模型也是一個不小的工程 。所幸的是,這兩千五百萬個機率有很多是接近於零的,例如:「美麗」這個詞出現的頻率很高,但是「美痢」可能就不會出現在任何地方(好吧,至少在這篇文章理出現過一次 XD)。因此, n-gram 模型不必詳述馬可夫模型裏的每個機率,有很多「不曾發生」的項目就直接以「趨近於零」來代表即可。

也由於這個特性,n-gram 模型相關的演算法和理論研究,很多都會特別處理這些「接近於零」的機率,讓整體的計算更加精確有效率。

n-gram 與 Google

如果從馬可夫鏈算起,n-gram 模型就不算是什麼非常新穎的概念,但其實際的應用卻可以說是跟隨著 Google 的成長而發揚光大。Google 在為所有的網頁編製目錄的同時,也統計了所有編目網頁裏的文字,形成一個非常大的 n-gram 模型,作為「搜尋」、「拼字檢查」、「翻譯」以及其他技術的基礎,同時 Google 也把他們統計出來的資料庫公佈在網路上,讓大眾免費使用。

Google 的翻譯演算法,跟傳統「查字典」的方法不同,而是依據 n-gram 的機率來推導,在某次公開的演講上,Google 的研發人員表示,這個方法效果本來一直都不佳,但是當 n-gram 資料庫大到某個程度時(more than billions of entries, 大於10億筆),翻譯的效果突然變得比傳統方法更精確。這也是這十年來「人工智能」由「規則」取向轉為「統計學習」取向的例子之一,「大量資料」和「高速計算」是在背後推動這項轉變的兩大動力。

-----廣告,請繼續往下閱讀-----

雖然 n-gram 的發展與語言的應用息息相關,但是正如前面所說的,「數學處理的是抽象層次的問題」,因此近年來 n-gram 的技術也逐漸應用到其他不同類型的「序列」上。「音樂」是一個常見的應用:音階的前後關係,樂句的前後關係….等等,也都有人開始嘗試以 n-gram 模型來分析。

總之,統計模型的功用可以相當廣泛,Google 示範了 n-gram 的強大功能,相信未來還會有更多有趣的應用。

本文原發表於作者部落格Esse, of Something

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia