nonoway在Xmind這個線上心智圖協作網站上建立了昱伸香料有限公司,也就是引發飲品塑化劑(DEHP)危機的這家公司,跟上下游之間的關係,隨著愈來愈多飲品、食品、保健食品、藥品發現含有塑化劑,我想這個圖表可以幫我們快速掌握目前情況。
本文與 研華科技 合作,泛科學企劃執行。
每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?
想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。
這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。
邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?
第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。
所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。
你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。
但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。
模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思!
然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!
你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!
二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。
三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。
無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。
台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。
如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!
👉 更多研華Edge AI解決方案
👉 立即申請Server租借
討論功能關閉中。
這集來分享學生必學的 AI 工具與操作!
本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。
廢話不多說,讓我們開始吧 !
最後,附上本支影片的學習懶人包:
如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!
更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!
討論功能關閉中。
真的假的,只要有它,再難的事都能秒懂?
它就是 AI 心智圖工具,只要一句話,一個關鍵字,就能生成一張完整的知識架構圖。
無論是聽不懂老師在講什麼的學生,還是被老闆交辦沒聽過的工作,只要把聽不懂的詞丟進去,噠啦~瞬間一目了然!
而且這些 AI 心智圖工具,也能直接把生成的圖表或段落變成一頁簡報,真的非常方便!
今天,我將介紹 Whimsical 、 Xmind 和 MyMap 這三個 AI 心智圖工具,其中 Whimsical 是免費的,Xmind 跟 MyMap 這個 AI 功能要額外付費,但我自己實測的感覺非常好,因此也推薦給大家。
廢話不多說,讓我們開始吧!
Whimsical 對 APP 開發者可能並不陌生,是集結流程圖、心智圖、 APP 原型圖的線上工具,現在有加入 AI,不僅可以更快速地整理內容,甚至能無中生有。雖然一個帳號只能免費使用 AI 100 次,再多就要付費,但我用到現在也還沒用完。
先從快速整理內容來吧,我這邊用泛科學這篇文章當範例,複製文章內容跟他說
請幫我把下面的內容,整理成心智圖
這樣文章的大綱就在你面前了,如果對某些主題有興趣,就可以用心智圖上的關鍵字去 google 搜尋。
接下來,就輪到無中生有啦!這次我什麼都沒有給他,直接輸入
請給我核融合的基礎知識架構心智圖
這樣 Whimsical 就會給你核融合的知識架構圖啦。
你看,是不是很簡單呢?
如果想要把這張心智圖做成簡報,你只要選擇 Section 把它框起來,
就能在右邊的 Present 欄位上面,看到新的 Section,這時按下撥放,就會是一張剪報嘍。
作為流程圖與心智圖工具的 Whimsical 本來就很容易上手,加上 AI 就變得更無腦了,你甚至可以讓 Whimsical + AI 做完所有內容,再自己再微調版面,框選 Section,就有一份出色的簡報啦!
不過還是要說一下,Whimsical 的 AI 找得資料有點少,可能連學校作業的需求都無法應付,如果真的要瞬間秒懂所有事情,你可能要試試看 Xmind 或 MyMap 。
先來說說 Xmind ,這款工具稱得上是臺灣最知名的心智圖工具了吧?像是創意思考或人生整理術之類的課程,都經常能見到 Xmind 的身影。現在加上 AI 之後,真的創造了天下沒有難學的知識,一個關鍵字,一張心智圖,順著心智圖學習,沒什麼事難得倒你。
這邊我想要提醒大家, Xmind 跟 Xmind AI 是兩個獨立的產品線,傳統的紅色的圖示 Xmind 包含桌面版程式與手機 APP , Pro 專業版的售價是每三個月 16 美金, Xmind AI 是新推出的產品,圖示改成紫色,專業版費用是每個月 8 美金,兩者並不互通,重要的事說三次,兩者不互通,兩者不互通,今天分享的是紫色的 Xmind AI 線上平台,不要跑錯家哟。
回到正題, Xmind 的 AI 稱為 Copilot ,只要跟 Copilot 說出你聽不懂的關鍵字,它就會用心智圖幫你解答,為什麼只要關鍵字呢?這邊來做個示範,跟前面 Whimsical 一樣,輸入
請給我核融合的基礎知識架構心智圖
然後再輸入
核融合的知識架構
最後只給 Copilot
核融合
這三個關鍵字。
好像字越少,內容越豐富?推測是 Copilot 會直接把輸入內容當成搜尋詞彙,因此訊息越多,限制越大。在用 Copilot 時,我都盡量給簡單的關鍵字,等它完成比較豐富的心智圖後,再對心智圖中的單一項目進行 AI 生成。
沒錯,這就是 Xmind 好用的地方了,無論是你自己畫心智圖遇到瓶頸,還是剛剛 AI 生成的心智圖有不完整的地方,只要點有問題的項目,再點選畫面下方的 Copilot ,就能再生成後續內容啦!
Xmind 也支援心智圖直接轉簡報的功能,每個項目就是一頁簡報,會依照簡報架構播放簡報。
如果要放說明文字在簡報上,你可以點項目後按下面的 note 輸入文字,
也可以在 local image 上傳你要的圖片,就會在該張簡報呈現這些內容。
雖然 Xmind 不能把簡報弄得美美的,但 Xmind 支援將心智圖下載成 .md 或 .ppt 等檔案格式,之後就可以套入之前介紹過的 gamma 或其他人做好的 template ,一份有結構、漂亮的簡報就完成啦!
最後介紹的 MyMap ,不是 google 那個 MyMap ,是 MyMap AI ,這個 A 編用完之後直接在工作群組裡面大喊:「這東西真是太好用了阿!」的一個工具。
一進入 MyMap 介面,基本上看不到任何工具欄或 icon ,只有跟 AI 的對話框,沒錯,這才是我想要的 AI 工具! 什麼複雜操作都不用,只要跟 AI 說話,工作就完成啦!
能有這麼狂的介面,也就表示 MyMap 對自己的 AI 功能很有信心,實際用過真的,沒跟你五四三,用得過程中完全不需要找工具欄,資料與內容整理都非常到位!
跟 Whimsical 類似,MyMap 支援多種資料呈現方式,你也不需要知道有什麼呈現方式,在問它問題的時候,它就會解析你想要的內容可能適合什麼形式的呈現,如果有多種呈現方式適合,它還會問你要用什麼形式呈現。
如果你想要用已有的文件或內容做心智圖或其他圖表,你只要按下對話框旁邊的加號,就會跳出上傳檔案或輸入網址的對話框,上傳或輸入網址之後,他就會出現即時預覽的視窗,接著,就可以跟檔案對話了。
幫我整理這個網頁的內容重點
MyMap 不囉嗦,直接給我一個完整的內容重點整理。
用到現在,MyMap 的唯一缺點是拖曳畫面很不直覺,以及它非常非常小氣,只有七天試用期,訂閱 MyMap 的最低價格是 9 美元,但 A 編為了 GPT4 ,之接訂了 12 美元的 pro 版。看來無論是遊戲還是現實,課金變強都是不變的道理啊!
好啦,其實也沒什麼特別要總結比較的,因為 MyMap 用起來真的太舒服了,但如果你只想當個免費仔,可以先用用看 Whimsical 。
而 Xmind 呢,其實它的檔案格式的支援度是最高的,要用其他軟體加工做成簡報的話,Xmind 還是有它的優勢之處的!
如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。
更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!