Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

用心智圖追蹤塑化劑的來龍去脈

鄭國威 Portnoy_96
・2011/05/26 ・141字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

nonoway在Xmind這個線上心智圖協作網站上建立了昱伸香料有限公司,也就是引發飲品塑化劑(DEHP)危機的這家公司,跟上下游之間的關係,隨著愈來愈多飲品、食品、保健食品、藥品發現含有塑化劑,我想這個圖表可以幫我們快速掌握目前情況。

-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1300 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
備審卡關、筆記好難整理?國高中生必學,一個 prompt 讓 AI 幫你做科系探索!
泛科學院_96
・2024/04/13 ・450字 ・閱讀時間少於 1 分鐘

這集來分享學生必學的 AI 工具與操作!

本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。

廢話不多說,讓我們開始吧 !

最後,附上本支影片的學習懶人包:

如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
4

文字

分享

0
1
4
一鍵生成心智圖?統整文章、製作簡報、學習知識!三款 AI 保母級教學!
泛科學院_96
・2024/03/04 ・4383字 ・閱讀時間約 9 分鐘

真的假的,只要有它,再難的事都能秒懂?

它就是 AI 心智圖工具,只要一句話,一個關鍵字,就能生成一張完整的知識架構圖。

無論是聽不懂老師在講什麼的學生,還是被老闆交辦沒聽過的工作,只要把聽不懂的詞丟進去,噠啦~瞬間一目了然!

而且這些 AI 心智圖工具,也能直接把生成的圖表或段落變成一頁簡報,真的非常方便!

-----廣告,請繼續往下閱讀-----

今天,我將介紹 Whimsical 、 Xmind 和 MyMap 這三個 AI 心智圖工具,其中 Whimsical 是免費的,Xmind 跟 MyMap 這個 AI 功能要額外付費,但我自己實測的感覺非常好,因此也推薦給大家。

廢話不多說,讓我們開始吧!

Whimsical

Whimsical 對 APP 開發者可能並不陌生,是集結流程圖、心智圖、 APP 原型圖的線上工具,現在有加入 AI,不僅可以更快速地整理內容,甚至能無中生有。雖然一個帳號只能免費使用 AI 100 次,再多就要付費,但我用到現在也還沒用完。

先從快速整理內容來吧,我這邊用泛科學這篇文章當範例,複製文章內容跟他說

-----廣告,請繼續往下閱讀-----

請幫我把下面的內容,整理成心智圖

暗能量是什麼?看不到也摸不著,我們該如何找到它?

這樣文章的大綱就在你面前了,如果對某些主題有興趣,就可以用心智圖上的關鍵字去 google 搜尋。

接下來,就輪到無中生有啦!這次我什麼都沒有給他,直接輸入

請給我核融合的基礎知識架構心智圖

這樣 Whimsical 就會給你核融合的知識架構圖啦。

你看,是不是很簡單呢?

-----廣告,請繼續往下閱讀-----

如果想要把這張心智圖做成簡報,你只要選擇 Section 把它框起來,

就能在右邊的 Present 欄位上面,看到新的 Section,這時按下撥放,就會是一張剪報嘍。

作為流程圖與心智圖工具的 Whimsical 本來就很容易上手,加上 AI 就變得更無腦了,你甚至可以讓 Whimsical + AI 做完所有內容,再自己再微調版面,框選 Section,就有一份出色的簡報啦!

不過還是要說一下,Whimsical 的 AI 找得資料有點少,可能連學校作業的需求都無法應付,如果真的要瞬間秒懂所有事情,你可能要試試看 Xmind 或 MyMap 。

-----廣告,請繼續往下閱讀-----

Xmind

先來說說 Xmind ,這款工具稱得上是臺灣最知名的心智圖工具了吧?像是創意思考或人生整理術之類的課程,都經常能見到 Xmind 的身影。現在加上 AI 之後,真的創造了天下沒有難學的知識,一個關鍵字,一張心智圖,順著心智圖學習,沒什麼事難得倒你。

這邊我想要提醒大家, Xmind 跟 Xmind AI 是兩個獨立的產品線,傳統的紅色的圖示 Xmind 包含桌面版程式與手機 APP , Pro 專業版的售價是每三個月 16 美金, Xmind AI 是新推出的產品,圖示改成紫色,專業版費用是每個月 8 美金,兩者並不互通,重要的事說三次,兩者不互通,兩者不互通,今天分享的是紫色的 Xmind AI 線上平台,不要跑錯家哟。

回到正題, Xmind 的 AI 稱為 Copilot ,只要跟 Copilot 說出你聽不懂的關鍵字,它就會用心智圖幫你解答,為什麼只要關鍵字呢?這邊來做個示範,跟前面 Whimsical 一樣,輸入

請給我核融合的基礎知識架構心智圖

然後再輸入

-----廣告,請繼續往下閱讀-----

核融合的知識架構

最後只給 Copilot

核融合

這三個關鍵字。

好像字越少,內容越豐富?推測是 Copilot 會直接把輸入內容當成搜尋詞彙,因此訊息越多,限制越大。在用 Copilot 時,我都盡量給簡單的關鍵字,等它完成比較豐富的心智圖後,再對心智圖中的單一項目進行 AI 生成。

沒錯,這就是 Xmind 好用的地方了,無論是你自己畫心智圖遇到瓶頸,還是剛剛 AI 生成的心智圖有不完整的地方,只要點有問題的項目,再點選畫面下方的 Copilot ,就能再生成後續內容啦!

-----廣告,請繼續往下閱讀-----

Xmind 也支援心智圖直接轉簡報的功能,每個項目就是一頁簡報,會依照簡報架構播放簡報。

如果要放說明文字在簡報上,你可以點項目後按下面的 note 輸入文字,

也可以在 local image 上傳你要的圖片,就會在該張簡報呈現這些內容。

雖然 Xmind 不能把簡報弄得美美的,但 Xmind 支援將心智圖下載成 .md 或 .ppt 等檔案格式,之後就可以套入之前介紹過的 gamma 或其他人做好的 template ,一份有結構、漂亮的簡報就完成啦!

-----廣告,請繼續往下閱讀-----

MyMap

最後介紹的 MyMap ,不是 google 那個 MyMap ,是 MyMap AI ,這個 A 編用完之後直接在工作群組裡面大喊:「這東西真是太好用了阿!」的一個工具。

一進入 MyMap 介面,基本上看不到任何工具欄或 icon ,只有跟 AI 的對話框,沒錯,這才是我想要的 AI 工具! 什麼複雜操作都不用,只要跟 AI 說話,工作就完成啦!

能有這麼狂的介面,也就表示 MyMap 對自己的 AI 功能很有信心,實際用過真的,沒跟你五四三,用得過程中完全不需要找工具欄,資料與內容整理都非常到位!

跟 Whimsical 類似,MyMap 支援多種資料呈現方式,你也不需要知道有什麼呈現方式,在問它問題的時候,它就會解析你想要的內容可能適合什麼形式的呈現,如果有多種呈現方式適合,它還會問你要用什麼形式呈現。

如果你想要用已有的文件或內容做心智圖或其他圖表,你只要按下對話框旁邊的加號,就會跳出上傳檔案或輸入網址的對話框,上傳或輸入網址之後,他就會出現即時預覽的視窗,接著,就可以跟檔案對話了。

像我給它前面泛科學黑洞文章的網址,這時候只要跟他說

幫我整理這個網頁的內容重點

MyMap 不囉嗦,直接給我一個完整的內容重點整理。

用到現在,MyMap 的唯一缺點是拖曳畫面很不直覺,以及它非常非常小氣,只有七天試用期,訂閱 MyMap 的最低價格是 9 美元,但 A 編為了 GPT4 ,之接訂了 12 美元的 pro 版。看來無論是遊戲還是現實,課金變強都是不變的道理啊!

結語

好啦,其實也沒什麼特別要總結比較的,因為 MyMap 用起來真的太舒服了,但如果你只想當個免費仔,可以先用用看 Whimsical 。

而 Xmind 呢,其實它的檔案格式的支援度是最高的,要用其他軟體加工做成簡報的話,Xmind 還是有它的優勢之處的!

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!