0

0
0

文字

分享

0
0
0

交通大學ISCI Lab創造服務型機器人的一片天!

馥林文化_96
・2013/04/28 ・3755字 ・閱讀時間約 7 分鐘 ・SR值 490 ・五年級

-----廣告,請繼續往下閱讀-----

採訪/謝瑩霖、黃渝婷

宋開泰老師與ISCI Lab的同學。

交通大學的智慧型系統控制整合實驗室(ISCI Lab)看到社會已慢慢走向老年化、且對於服務型機器人的需求日益增加的現況,研發出緊急照護機器人RoLA、運用Kinect視覺模組搭配機械手臂可用來抓取物品的阿拉丁、強調人機互動的輔助行走機器人Wal-bot、軟外表導覽機器人小狐以及其他類型的服務型機器人。

ISCI Lab目前為了符合各個層面的服務需求,積極地進行改良服務型機器人。

【研究契機】

由交通大學電機工程系宋開泰老師領軍的智慧型系統控制整合實驗室(以下簡稱ISCI Lab),便是以研究服務型機器人為出發點,研究開發出各式各樣機器人。

-----廣告,請繼續往下閱讀-----

宋開泰老師在比利時魯汶大學攻讀博士學位時是研究移動式機器人、製作工廠內的自動搬運機器人。宋老師說:「那時候時工廠內的搬運機器人只會沿著地上的磁導線移動,之後便考慮移除鋪設在地上的磁導線,希望讓搬運機器人的功能能更上一層樓。」在當時,機器人都要靠著磁導線來移動,磁導線對於機器人來說就像是火車的軌道一樣,只需將感測路徑的感測器裝在機器人的下方,機器人就能跟隨磁導線就能自然前進,但這也限制了機器人可行動(服務)的範圍;若是能夠開發出不用靠磁導線移動的機器人,那麼機器人可移動的範圍就能變得更廣、服務也能更自由。但相對來說,這樣的機器人在就會複雜許多,感測方式也要從原本的跟隨改成掃描環境的定位量測,在程式撰寫上的困難度也將隨之提高。

宋老師回國後,了解移動的機器人還有有許多問題可以去做深入地探討,於是開始將機器人從用於工廠的搬運機器人延伸到用於醫院或居家照護的服務型機器人,加上察覺到臺灣社會的老年化問題,因此鑽研服務型機器人這個領域,並於1991年在交通大學正式成立ISCI Lab,此實驗室目前已開發出可在家中巡航的緊急照護機器人RoLA、運用Kinect視覺模組搭配機械手臂可用來抓取物品的阿拉丁、強調人機互動的輔助行走機器人Walbot與少見的軟外表接待型機器人小狐。宋老師說:「其實能自由移動的搬運機器人可說是服務型機器人的前身。我們實驗室成立的宗旨及研究主軸在於『這些機器人能提供給人們什麼服務』,而不是強調『這些機器人是如何設計得的』。」宋老師藉由這樣的信念,教導及帶領學生進入服務型機器人的世界,並期許ISCI Lab能讓服務型機器人有更多元的服務及發展。

【軟體與硬體架構】

在硬體部分,ISCI Lab的四臺重點機器人在外觀上的設計,都可大略分成頭部與身體兩大部位,除了阿拉丁沒有裝設螢幕外,其他三臺機器人都有裝設觸控式螢幕,是其可與使用者進行互動。在感測器方面,機器人皆採用精準度較高的雷射測距儀來量測機器人周圍的障礙物,並且將測距儀設置在機器人身體下方,如此一來可避免因障礙物過低而無法偵測到的狀況。而宋老師實驗室採用自行研發的ZigBee,與市面上販售的不同點在於,宋老師在自製的ZigBee電路板上增設了加速度感應器,可用來測量人體動作的加速度,舉例來說,當人跌倒時,傾倒的速度較高,透過加速度感應器可判斷出是跌倒而不是臥躺;另外傳輸的範圍也較市面上來的小,大概只有10公尺的距離,但在家中使用也已相當足夠。

在軟體方面,宋老師採用的是C語言,雖然說C語言在傳承及閱讀上較為困難,但它能做的事情也比較多,記憶體也占的比較少。這樣說起來,相對耗費的資源也比較少,並且可讓學生們在做研究方面能更用心地研讀程式。宋老師希望讓學生學的愈多愈好,因為在求學階段學得愈多、碰到的問題愈多,未來當他們在面對未知的未來時,也就更有解決問題的能力。

-----廣告,請繼續往下閱讀-----

【功能各異的服務型機器人】

照護機器人RoLA

首先從RoLA(Robot of Living Aid)這臺機器人開始,它是在Easy Bot這臺家用伴侶機器人之後所研發出來的居家照護機器人,移動方式與Easy Bot相同都採用雙獨力驅動輪搭配一個自由轉向輪來進行各方向的移動。而我們可從名稱上來得知這臺機器人主要功能是給予使用者在生活方面的協助,而對象特別鎖定在年紀稍長的老年使用者。搭配保全機器人既有的巡邏概念,讓機器人能在家中自由移動,當發生事故時,透過配戴在使用者腰間的ZigBee姿態感測器,可感測到使用者的姿態變化,並作出相對應的動作,且快速移動到使用者求救的位置,並發送求救訊號給出門在外的其他家中成員。

舉例來說,當老年人(使用者)單獨在家,不小心跌倒時,RoLA一偵測到事件的發生(跌倒的姿態),便會使用裝設在距機體下半部的雷射測距儀來閃避障礙物,在短時間內自主移動到老年人身旁,一抵達老年人身邊後,便會使用裝設在頭部的攝影機拍攝影像,並傳送簡訊到家中成員的手機或者利用3G網路傳送即時影像到家中其他成員的智慧型手機中。另外,由於鏡頭是可遙控的,家中成員可以遙控攝影機鏡頭的方向來取得更多的環境資訊。在偵測人體姿態的ZigBee方面,宋老師的學生們目前已開發出包含:站、坐、走、臥、跌倒與上下樓梯共七種動作姿態,而為了要分辨走與跑、臥躺與跌倒這種看似相同的動作,在ZigBee中增加了加速度感測器,以速度的不同來分辨出不同的姿態。

具有輔具功能的Wal-bot

在研發出可偵測老年人跌倒並傳送求救訊息的RoLA後,ISCI Lab之後又研發出可預防老年人跌倒,也可當成輔具來輔助使用者行走的Wal-bot。機器人外觀上與RoLA著顯著的不同點在於,Wal-bot裝設了一組造型特殊的扶手,讓每位使用者能以各自習慣的扶握方式來使用,並且預防老年人在家跌倒的機率,希望提高老年人的生活安全度。

Wal-bot結合握把、雷射測距儀和力量感測器,變成一臺可帶著使用者前進到想去的位置的機器人。使用者在扶上扶手時,輕輕推一下,Wal-bot就會帶著使用者移動。藉由力量感測器的協助,也讓老年人用較少的力量就可推動Wal-bot行進。Wal-bot跟ROLA一樣可以藉由雷射測距儀自主閃避障礙物,而Wal-bot的顯示畫面圖中的左上角框框可顯示出周圍的環境,紅線愈長表示前方的空間愈空曠。ISCI Lab也實際展示了Wal-bot的安全性,教室外面的走廊布置成一個充滿障礙的環境,再以蒙眼方式親身測試Wal-bot的避障功能。

-----廣告,請繼續往下閱讀-----

而Wal-bot的在移動方式則採用四個不同馬達各別控制四個全向輪,以不同的旋轉方式來進行前後左右各個方向的移動。另外Wal-bot可在上坡時提供額外的力道讓使用者有種如履平地的感覺,相對地在下坡方面也會稍稍提供阻力,讓移動速度不致於過快。

另外Wal-bot還有一項功能,它可以使用程式規劃出家中環境移動的路徑,當使用者想在家中移動時,只要點選螢幕設定起點與終點,Wal-bot便會自動規劃最短路徑,讓使用者用最短且最省力的方式完成移動。

有手臂的阿拉丁

與前兩臺機器人相比,阿拉丁在外觀上有顯著的不同,它的機身設計得較高,並有裝上兩隻擁有七個自由度的手臂,能協助使用者來拿取物品,舉例來說,老年人想要拿到高處的藥罐,不易拿取時就能呼叫阿拉丁來協助完成。阿拉丁也能透過同樣裝設在機體下方的雷射測距儀來偵測障礙物,進而讓完成取物動作的機器人能自行避障,流暢地完成整個協助的動作。

而阿拉丁這款機器人,宋老師認為還是有許多可改進的空間,因此繼續開發出阿拉丁二代,將一些功能做更進一步的提升與更新。首先將手臂的自由度由七個減少為六個,如此一來不但不會減少手臂的靈活度,還可以減少馬達帶來的重量;再來是將新開發的四驅輪移動模式裝設在二代上。四驅輪移動模式與一般輪移動模式不同,每一顆輪子分別由一組馬達來控制轉向角度與前進後退,因此移動起來能更平穩,而且在動力損失上,並不會像先前使用全向輪時,因為輪子的角度問題損失較多的能量,移動起來也更平穩快速。

-----廣告,請繼續往下閱讀-----
外表可愛的絨毛小狐

製作小狐的動機為宋老師考慮到有許多的高中生喜歡到交通大學電機系參觀,但用人來進行接待已是相當普遍的方式,便與學生討論製作一臺與眾不同的接待型機器人,

小狐擁有兩個特色:第一,小狐能與來訪賓客進行互動遊戲。舉例來說,來系上參觀的學生能與小狐玩互動遊戲,讓學生了解到電機系在製作機器人方面的樂趣。第二,宋老師將小狐做成可增加好感度的軟外表,也設計成可以用觸摸的方式與小狐進行互動遊戲,甚至,小狐也會因為觸摸力道的不同而有不同的反應!相較於原本金屬外表的機器人,這顛覆了以往機器人給人外表冰冷的刻板印象,而有著可愛外表與柔軟表皮的小狐,也縮短了原本人與機器人間的距離感,讓人在互動時感到更為自在且愉快。

另外小狐待機時,頭上的耳朵會像小狗一般微微晃動,當使用者走到面前時,可透過脖子上的三個超音波感測器,藉由感測使用者的位置來轉動頭部來面對使用者。而當使用者觸摸小狐身上不同部位時,小狐也產生不同的對應方式來發出聲音。真是期待未來看到小狐在電機系館的門口為大家進行更多功能的服務呢!

【結語】

在ISCI Lab見到了許多從「服務人」為出發點的機器人,果真科技始終來自於人性!四臺機器人的專精技術、開發的領域與功能都不相同,期望未來有一天能夠將這幾個領域技術全部整合成一臺,塑造出功能更廣、性能更優的全方位家用型機器人。這樣照護老人再也不用聘請全天候看護,打掃家裡也不必找尋仲介公司雇用外傭,只要一臺機器人就萬事搞定!可以想見在未來的家庭生活,會更有科技感。

-----廣告,請繼續往下閱讀-----

 

參考連結:交通大學智慧型系統控制整合實驗室

文章原文刊載於《ROBOCON》國際中文版2013/5月號

-----廣告,請繼續往下閱讀-----
文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
3

文字

分享

0
1
3
想不出企劃?讓 AI 幫你整理資料!Notion + Zapier 超詳細教學!
泛科學院_96
・2024/06/03 ・5054字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

今天來分享我們用 notion 做知識管理的實作過程與心得,不過,我們發現這樣還不夠用,生為 AI 懶人 YOUTUBER,最好有天上掉下來的題目跟素材,所以還串了 zapier 做自動化 AI 新聞收集!

不過在分享實做過程跟心得前,想先跟大家分享我跟 AJ 有在用的筆記工具,這樣你會知道為什麼我們最後選擇用 notion 了。

如果你只想看 notion 自動收集資料,可以直接下滑教學。

Notion

首先是 notion 端,我們先把 papaya 的模板 複製過來。

-----廣告,請繼續往下閱讀-----

調整一下資料表格式,後面主要會用到的是名稱、URL、標籤、狀態。

首先,我們先點選標籤,

新增你想要自動化的youtube頻道名稱。

然後到狀態,把原本 index 改名成 youtube 自動串連。

-----廣告,請繼續往下閱讀-----

這樣就完成 notion 端的設定。

Zapier

接著來到 zapier,登入後點 create。

進到自動化流程的編輯畫面,你會看到上面有一個 AI 協作的對話框。

輸入「特定 youtube channel 發布影片後,會把影片標題跟連結傳送到 notion 的資料庫」

這樣流程 flow 就出來啦!

-----廣告,請繼續往下閱讀-----

如果 AI 給你的長這樣,要把中間的 get report 刪除。

這邊簡單說一下,畫面上看到的這一串,叫「flow」。

「flow」的最上面是「trigger 觸發器」,是啟動 flow 的條件,

其餘的叫「action」,trigger 觸發後會依序執行下面的 action。

-----廣告,請繼續往下閱讀-----

我們先點進第一個 trigger 進行設定,

在這邊確認 event 是 new video in channel。

然後在 account 這邊,串聯你的 youtube 帳號,用哪個沒差,除非你是頻道主要觀察自己的數據。

接下來就到了重頭戲 trigger 啦,這邊要填的是 channel ID。

-----廣告,請繼續往下閱讀-----

提醒,channel ID 不是網址後面這串,

你可以到想要抓的頻道首頁,按 ctrl+U 開啟原始碼,再按 ctrl+F 尋找這串文字,

後面那串亂碼就是 channel ID 了。

貼回去按 refresh,

-----廣告,請繼續往下閱讀-----

如果有成功抓到,下面的 countinue 就會亮起來,

按下去進到測試頁面 test trigger 按下去。

成功的話,你就會看到他把影片資料抓過來嘍,下面是選後面用的測試資料,選哪個都可以,選完點 countiune。

就會進到 notion 設定,確認一下 event 的設定是不是 create database item,

-----廣告,請繼續往下閱讀-----

確認完按下一步,account 這邊設定連接到你的 notion 帳號,連完一樣按下一步。

重頭戲又來啦,action 這邊是設定 youtube 資料要怎麼存進 notion?

我們先點開 database,選擇剛剛整理過的資料庫,

然後就會跑出很收熟悉的選項,沒錯,這就是剛剛在notion設定好的資料表欄位,現在只要告訴他要把資料放入哪個欄位就好。

名稱,放影片的 title。

標籤,放剛剛設定好的頻道名稱標籤。

URL,就選影片連結的 URL。

狀態選 youtube 自動串連。

這樣新影片就會出現在 notion 頁面的左邊自動呈現囉。

這樣就完成啦,又可以點 countinue 了,不過我自己還會在 content 這個欄位選 description,把影片描述也放入 notion。

點完 countine 進入測試環節,

按 test step。

成功的話,就會看到 test step 變成 publish,

這時回去看 notion 的資料庫,你會發現多一筆剛剛測試的數據。

最後按下 publish,這樣就完成啦。

之後就坐等別人發片,再跟風就好!想企劃就是這麼簡單。

結語

最後來分享一下實做心得吧!

這次實做讓我體會到 notion 的美妙之處,之前都單純把他當成昇級版的 evernote,但跟 Zapier 之類的自動化服務串聯後,馬上變成不同檔次的東西,集前台後台於一身,甚至還能做網站!

這自由度真的是只有想不到,沒有做不到,沒程式基礎的人也能輕鬆入門,難怪會紅。

最後,想問大家會想用 notion 跟 zapier 來做什麼呢?

如果看到有趣的留言,我會試著做做看,有其他想要看的 AI 工具測試或相關問題,也可以留言分享喔!

如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!