Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

水珠的神秘彈跳! Invisible Worlds in the Water

Scimage
・2011/05/17 ・409字 ・閱讀時間少於 1 分鐘 ・SR值 473 ・五年級

高速攝影機常常揭露一些意想不到的神秘行為,這影片是利用10000FPS的攝影機拍水珠落入水面的情況。因為電視廣告,應該很多朋友都知道當水珠掉落水面的時候,會有反彈的水柱,這樣的行為其實在隕石撞擊上也有,但是比較少人知道的是,當水珠夠小的時候是可以在水面上直接彈跳的!

反應就像皮球掉到地面一樣,水珠本身不進入水,只在上面彈跳,也不太改變水面的屈度。這裡面牽涉到很多物理,主要的原因是水珠跟水面之間有一層空氣存在,當水珠越來越小的時候,這層空氣對水珠的影響也越大。如果水珠想要進入水面,就必須把這層空氣給排除,但是因為水珠的動態跟水面表面張力彈性的動態都太快,所以還來不及把空氣都排除,反彈就開始了,這樣一來水珠就會在水面上跳了。

這影片最後有拍到這樣的現象,其實經過好的設計(例如震動液面),是可以看到液體一直都在液面彈跳的狀態喔!

http://www.youtube.com/watch?v=6KKNnjFpGto

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2010-12-15]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

10
1

文字

分享

0
10
1
最讓水珠站不住腳的塗料
胡中行_96
・2023/11/06 ・2183字 ・閱讀時間約 4 分鐘

不少影視作品,善用水滴暗喻流淚。離散的場面哀戚,暗夜裡風雨飄搖。雨絲打在窗上,衝擊著觀眾敏感的心。主觀鏡頭宛如主角的目光,透過玻璃望向遠方。可是任誰都無法忽略,前景那一顆在表面移動的雨滴,默默地、緩緩地滑到一半,止住了。雨過天晴,窗外的玫瑰花瓣托著晨露,晶瑩剔透,水珠怎麼飽滿,也沒溜下來。如此揪心的情緒渲染,倘若換作荷葉或鐵氟龍鍋具,效果肯定蕩然無存。稍稍傾斜,便把持不住一滴,三兩下流得乾乾淨淨,不著痕跡。於是,被騙得一把鼻涕一把淚的觀眾,拭乾雙眼,體會刻骨銘心:摩擦力大的表面,即使垂直,水滴也可能攀附;摩擦力小,則些微的斜度,就會流失水滴。[1]

圖/Gary Ellis on Unsplash

接觸線摩擦力

想留住水滴,就如同要挽回即將離去的戀人,免不了得談客觀條件。芬蘭阿爾託大學(Aalto University)和于韋斯屈萊大學(University of Jyväskylä)合作的團隊,在《自然化學》(Nature Chemistry)期刊上,介紹新創塗料時,列出下面 4 個影響水滴流動的要素:[1]

  1. 接觸線摩擦力(contact line friction):受到水滴的大小、表面張力、接觸面的形狀,以及水滴後退角(receding contact angle)與前進角(advancing contact angle)(如下圖)的差距所影響。接觸線摩擦力是這裡羅列的項目中,唯一會導致靜摩擦力(static friction),[1]阻礙移動發生的力量。[2]接下來的幾個,都是在水滴已經開始移動後,才會出現。[1]
  2. 黏滯耗散(viscous dissipation):流動的過程中,其黏性將部份動能,不可逆地轉換成熱能。[3]
  3. 氣阻(air resistance):通過氣體的時候,氣流對其表面產生的阻力。[4]
  4. 靜電力(electrostatic forces):某些物體相互摩擦後會帶電,因而有推或拉的力量。[5]當水滴在疏水性的表面上移動,引發電荷分離(charge separation),水滴通常帶正電,該表面則帶負電。靜電力對斜面上水滴下滑速度的影響,甚至可以超過重力。[6]
a. 水滴在(左)親水性和(右)疏水性表面上的情形;b. 水滴後退角(θR)與前進角(θA)的差距,會影響接觸線摩擦力。圖/參考資料 7,Figure 1(CC BY 4.0

水滴對固體表面的依附,使它處處惹人嫌。比方說,在汽車的擋風玻璃,以及先進駕駛輔助系統的鏡頭上,會妨礙視線,干擾行車安全。[7]常言道:「所有感情問題,一律建議分手。」研究團隊想利刀斬孽緣,則所開發的塗料,要能有效減少物體表面的接觸線摩擦力,使水滴在上頭「站不住腳」。過往的研究認為,關鍵是降低形貌或化學的異質性[1]

開發新塗料

研究團隊調節時間、溫度和水份等變因,讓疏水性的辛基三氯矽烷(octyltrichlorosilane),在親水性的二氧化矽(SiO2)板上,自然「生長」成自組裝單層膜(self-assembled monolayer)。[1]無論這層膜在矽板上的密度低,也就是表面大多都是二氧化矽;或者密度高,即辛基三氯矽烷佔多數,都可以視為異質性低的情形。反之,若表面密度中等,則異質性高。理論上,異質性低對削弱接觸線摩擦力有幫助,但是研究團隊認為塗料密度低的時候,表面親水性過高,效果可能不彰。[1, 8]

-----廣告,請繼續往下閱讀-----

然而實驗結果有些出乎意料:當這層膜在矽板上的表面密度較低,水竟然自由地於塗料的分子間流動,很容易滴落;而表面密度高時,水則停留在塗料上面,也可以輕易滑下來。唯有介於兩者之間,水才會緊巴著矽板。[1, 8]

表面塗料低、中和高的密度,造成不同的異質性(heterogeneity)與摩擦力(friction)。圖/參考資料 1,Figure 1a(CC BY 4.0

防潑水塗料的用途

芬蘭研究團隊的成品,應該是目前全世界最滑溜的塗料,防潑水的能力超級好。[8]麻煩的是厚度太薄,耐用性有待提升。將來如果成功改善,有望廣泛運用於除冰、抗霧、暖氣管線等諸多方面。[1, 8]

表面塗料密度低,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 2(CC BY 4.0
表面塗料密度中等,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 3(CC BY 4.0
表面塗料密度高,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 4(CC BY 4.0
  1. Lepikko S, Jaques YM, Junaid M, et al. (2023) ‘Droplet slipperiness despite surface heterogeneity at molecular scale’. Nature Chemistry.
  2. Müser MH. (2008) ‘How static is static friction?’. Proceedings of the National Academy of Sciences, 105(36):13187-8.
  3. Malik MY, Hussain A, Salahuddin T, et al. (2016) ‘Effects of viscous dissipation on MHD boundary layer flow of Sisko fluid over a stretching cylinder’. AIP Advances, 6, 035009.
  4. Oxford University Press. ‘Air Resistance’. Oxford Reference. (Accessed on 27 OCT 2023)
  5. Electrostatics: A non-contact force’. (31 DEC 2018) Department of Education, Victoria State Government, Australia.
  6. Díaz D, Li X, Bista P, et al. (2023) ‘Self-generated electrostatic forces of drops rebounding from hydrophobic surfaces’. Physics of Fluids, 35(1):017111.
  7. Hodgson G, Passmore M, Skarysz M, et al. (2021) ‘Contact angle measurements for automotive exterior water management’. Experiments in Fluids, 62, 119.
  8. Researchers create the most water-repellent surface ever’. (23 OCT 2023) Aalto University, Finland.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
發明高速攝影,電影般的人生:邁布里奇誕辰──科學史上的今天:4/9
張瑞棋_96
・2015/04/09 ・1206字 ・閱讀時間約 2 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

邁布里奇於 1978 年進行的馬匹高速攝影。圖/wikipedia

1874 年 10 月 17 日,劇評家拉金斯 (Major Larkyns) 走到平常玩牌的俱樂部門口時,一個人影擋在他面前。他警覺地問道:「你是誰?」人影冷冷地回答:「我叫邁布里奇,這是我老婆給你的回覆。」說完舉起槍朝他的胸膛開槍,拉金斯倒地不起。邁布里奇怔怔望著地上這個讓他戴綠帽的男人,直到警察前來逮捕。

俯首認罪的邁布里奇原本已準備接受法律制裁,沒想到企業大亨史丹佛(Leland Stanford, 沒錯,就是他創立了史丹佛大學)竟找了三位舊金山最厲害的律師來幫他辯護。律師與他討論辯護策略時,順便帶來一則口信:「史丹佛先生還等著你完成兩年前委託你的任務哪!」

邁布里奇沒有忘記。兩年前他已是小有名氣的攝影家,因此史丹佛找他去時,他原本以為是要幫他個人或家族成員拍肖像照,不料史丹佛開口竟然問了一個讓他丈二金剛摸不著頭腦的問題:「馬在奔跑時,四隻腳會同時離地嗎?」

-----廣告,請繼續往下閱讀-----

他怎麼會知道?也不會有人知道吧;馬跑那麼快,根本不可能看得清楚。史丹佛先生說他相信答案是肯定的,希望邁布里奇幫他證實這一點。他可以提供賽馬和所需的資金,邁布里奇只要發揮他的攝影技術就行了。

史丹佛先生也未免想得太簡單了!一來底片曝光需要時間,再則每次拍完就得抽換底片,哪可能清楚拍到馬騰空的瞬間?但在史丹佛的堅持下,加上他自己也頗有興趣挑戰,他還是答應了。如今他身陷囹圄,又罪證確鑿,史丹佛先生真的相信他還有機會完成這項任務?

四個月後,陪審團接受邁布里奇是因為之前腦部意外受傷而性情丕變,害怕失去妻子才憤殺姦夫,算是正當防衛故予以無罪釋放。邁布里奇也開始著手改進相機的快門速度與底片上的感光劑,終於在 1878 年 6 月 15 日這一天,他用了 24 台相機,間隔 69 公分沿著跑道排成一列;跑道另一側則豎起標了距離的布幕作為背景;每台相機的快門綁上細線拉到跑道上由馬腳觸動,而成功拍下馬奔跑的分解動作,證實馬的四隻腿往內縮時同時離開地面──而非一般人所以為的在四肢伸展時離地。

邁布里奇完成了史上首次的高速攝影,之後還幫賓州大學拍了超過十萬張的相片,分析人類與各種動物的動作。高速攝影與顯微鏡分別在時間與空間上讓人眼得以突破生理上的限制,使我們大開眼界,更能看清萬物的本質,可說是科學史上相互輝映的重要發明。

-----廣告,請繼續往下閱讀-----

邁布里奇也是定格動畫的鼻祖。他發明了環狀的「跑馬燈」(Zoopraxiscope),放上馬奔跑的定格相片,旋轉之後就會宛如看到馬在奔跑的影片(這應該就是跑馬燈這名稱的由來),而成為電影放映機的原型。

從英國移民來美國,在一次騾車意外中頭部受傷返回英國休養而學會攝影,因此回到美國後從書商轉為攝影家,又從殺人犯變成重要的發明家。邁布里奇戲劇化的人生完全就像一部電影呢!

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。