0

0
0

文字

分享

0
0
0

響尾蛇大戰機器松鼠

陳俊堯
・2013/02/11 ・1799字 ・閱讀時間約 3 分鐘 ・SR值 467 ・五年級

圖片來源: Wikipedia

過年在網上找蛇故事,覺得這個挺有意思的,拿來跟大家分享。

這故事的主角是加州地松鼠(California ground squirrels)跟它的宿敵北太平洋響尾蛇(northern Pacific rattlesnake)。想像一下,松鼠在野外愉快地跳著,冷不防撞見前進的路上躺著的一隻吐著蛇信,有劇毒的響尾蛇。你押誰會贏?蛇年,當然賭蛇神的子弟勝出,可是真的是這樣嗎?下面這段是 YouTube 上眾多影片中的一支。

看來這松鼠挺難搞的,結果是蛇落荒而逃。響尾蛇雖然有毒,卻對松鼠起不了作用,這在多年就有正式研究證實過了[1]。不過這響尾蛇的確會吃松鼠,小松鼠比較容易死在響尾蛇手上,大松鼠就不一定了,所以松鼠看見響尾蛇會這麼兇惡是有原因了。這松鼠在見到響尾蛇時會開始用力搖尾巴,這個動作是要嚇阻蛇的進攻嗎?看起來不太威啊!

他們在野外找到響尾蛇棲身地,架好攝影機看這些蛇在野外碰到搖尾巴的松鼠會有什麼反應。研究的結果發現,看到搖尾巴的松鼠後響尾蛇比較容易放棄在這一區的埋伏行動而離開[2]。所以松鼠搖尾巴是有用的。

後續的研究發現原來松鼠搖尾巴不只是造成視覺效果而已,它們還讓尾巴發熱,讓能偵測動物熱源的響尾蛇能在用兩種感官確實知道松鼠的存在[3]。尾巴發熱的現象我們用眼睛看不出來,但是可以借助紅外線攝影機拍來記錄。在下面的影片裡可以看到當松鼠看見響尾蛇時,會加熱自己的尾巴,影片裡可以清楚看到松鼠尾巴是熱的。

但是如果換成不能偵測紅外線的松蛇(gopher snakes, Pituophis melanoleucus)出現在面前,那松鼠就不用浪費能量去熱尾巴了。

到目前為止我們得到的資訊是當松鼠碰上響尾蛇時會動怒(會叫駡哦),遇會劇烈擺動發熱尾巴,而通常在這個狀況下蛇就退走了。這個故事還少一塊未解:到底松鼠尾巴發熱不發熱,蛇在乎嗎?

這時,機器松鼠要上場了。為什麼一定要找電機教授幫忙建一隻機器松鼠來回答這個問題呢?因為你沒辦法要求松鼠違反本能,在看到響尾蛇時只搖冷尾巴呀!這隻松鼠的配備是一個會搖的尾巴,再配上一個讓你控制這搖動的尾巴要不要發熱的開關。這隻機器松鼠可以幫助研究人員搞清楚尾巴發熱這件事對蛇代表了什麼意義。他們在實驗室裡讓響尾蛇分別接見搖熱尾巴和搖冷尾巴的機器松鼠,發現響尾蛇在看到搖熱尾巴的松鼠後,會花比較長的時間注意熱松鼠,身體維持找獵物拉長形態的時間縮短,變得花比較時間纏繞起來戒備。

不過這些實驗都是在實驗室裡進行,搞不好只是一場誤會,在野外温暖陽光和青草香的影響下會不會出現完全不同的反應?驗證的最好辦法就是把機器松鼠搬到野外,測試響尾蛇對松鼠的的反應。聽起來很酷,可是你愛的話你去做,因為你得在豔陽下四處在草叢裡尋找響尾蛇,找到後在不能驚擾它(不然不是逃走就是攻擊),小心架好攝影機和軌道,把機器松鼠送到它面前,還要惹怒它向前進攻,記錄下蛇的動作和時間。研究人員先測試在野外松鼠能不能靠搖尾巴的動作來降低蛇的攻擊意願[4]。請看下面的影片。

實驗結果證實搖尾巴可以警告蛇,讓蛇更警戒而不進攻,或著放棄進攻。研究人員的解讀是這樣的,松鼠的這個動作讓蛇知道我已經看到你而且準備好跟你對戰,所以你勝算不大可以放棄了。當一隻松鼠搖起尾巴,也等於警告了其它松鼠,所以響尾蛇在這一帶埋伏沒什麼機會,還是趁早換獵場吧。

這一系列的研究還在持續進行中,新的故事還在發展中,等到進一步劇情明朗後再回來為大家報導。不過去年出現了個意外的插曲。美國有位參議員每年會選出他覺得美國政府浪費預算的花費明細,去年這篇拿稅金造機器松鼠的研究經費也上榜。請見美國 ABC 電視台的報導

後續當然出現不少討論,有人指出這些研究有很不錯的學術價值,有人認為在教育上提供很好的教材,有興趣的人可以在網路上找找相關連結。國家經費當然需要用在對的,而且需要的地方。但是什麼是需要的地方?能賺錢申請專利的研究當然不錯,但是維持研究能力的多樣性,讓社會裡留住能從各種不同角度看問題的人,不也是件重要的事?

參考文獻:

[1] Poran NS, Coss RG, Benjamini E. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation.
Toxicon. 1987;25(7):767-77.

[2] Rulon W. Clark Pursuit-deterrent communication between prey animals and timber rattlesnakes (Crotalus horridus): the response of snakes to harassment displays. Behavioral Ecology and Sociobiology (impact factor: 3.18). 04/2012; 59(2):258-261.

[3] Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N. Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14372-6.

[4] Barbour MA, Clark RW.Ground squirrel tail-flag displays alter both predatory strike and ambush site selection behaviours of rattlesnakes. Proc Biol Sci. 2012 Sep 22;279(1743):3827-33.

文章難易度
陳俊堯
109 篇文章 ・ 19 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

3
0

文字

分享

0
3
0
逼小鼠游泳,還怪牠放棄掙扎?
胡中行_96
・2022/07/07 ・2777字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

「可有任何事物能令你恐懼?」「有,孤獨地死去。因此,我帶你同行。」-電影《比得兔》(2018)。[1]拉別人陪葬的概念,雖然不太道德,但確實使人安心。然而,「兄弟爬山,各自努力」,人生總有非得獨立克服的重大挑戰。在缺乏救援的情況下,僅知他人也正經歷相同的苦難,對當事者又會有何影響?

《救難小福星》(2022)的花栗鼠,代替小鼠示範本研究的核心精神。圖/IMDB

實驗小鼠接受挑戰

日本研究團隊買了一票10週大的雄性實驗小鼠(C57BL/6 N),來接受行為測試。[備註]為避免不同生理性別的反應差異,可能影響比較結果,雌性被排除在外。小鼠們4到5隻住一籠,裏頭吃喝無限供應,室溫維持在攝氏23到26度之間,照明每天開關各12小時循環。[2]總之,小鼠養尊處優,就等著任人宰割。

C57BL/6實驗小鼠的正常狀態。圖/Scientific Reports

實驗項目:懸尾測試、強迫游泳測試

懸尾測試(tail suspension test):小鼠尾巴末端,被用膠帶固定,整隻吊離地面60公分。[2]

左圖/參考資料 2

強迫游泳測試(Porsolt forced swim test):在透明圓柱容器中,注入23 °C的水,直到水深達7.5公分,再將小鼠放置其中。[2]

右圖/參考資料 2

這二項行為測試,又分別以三種模式進行:[2]

  1. 每次一隻小鼠受試。
  2. 一次有二隻小鼠參與,中間以不透明隔板分開。理論上,還是可能聞到對方的氣味,或聽到彼此的聲音。
  3. 同時實驗的兩隻小鼠之間,沒有隔板阻擋視線。
三種模式:單鼠、雙鼠有隔板,以及雙鼠無隔板。圖/參考資料2,Figure 2a & Figure 3a

此外,為了瞭解受試小鼠是否會受同儕反應的影響,在雙鼠被迫游泳前,還有一道手續:先把小鼠關進圓柱容器中10分鐘,使其失去活動力,再對其中幾隻注射抗憂鬱劑imipramine。另一方面,能夠運動或是靜止的黑色玩具,也被納入此試驗。換句話說,除了單鼠模式外,所有游泳測試都會有下列5組之一,與被觀察的實驗組小鼠相鄰:[2]

  1. 正常的對照組小鼠。
  2. 低活動力小鼠。
  3. 打了抗憂鬱劑的高活動力小鼠。
  4. 毫無作為的黑色玩具。
  5. 動作頻頻的黑色玩具。
強迫游泳測試的組別,由左至右:正常、低活力、高活力、靜止玩具,以及運動玩具。圖/參考資料2,Figure 5a

無論是上述哪種類型的實驗,每回都必須維持6分鐘,全程監視錄影,並記錄小鼠停止掙扎的次數與秒數。[2]

實驗結果:游泳的小鼠受鄰居或環境影響

日本團隊在2022年6月2日的《科學報告》(Scientific Reports)期刊上,發表了這個研究的結果:在二種測試中,小鼠放棄掙扎的次數,都沒有因為同伴或玩具的加入而改變。參加懸尾測試的小鼠,可能因為無法輕易轉頭觀察環境,所以同時受試的小鼠數量,以及是否加入隔板,都不會改變牠們不動的時間長度。相反地,在強迫游泳測試裡,實驗組小鼠的姿勢,比較容易察覺周遭變化。因此,不管有無隔板,旁邊出現什麼狀態的同類或玩具,小鼠都會靜止較久。[2]

於是,日本科學家下了一個結論:抓小鼠來實驗的時候,請記得注意牠們是否被鄰居或環境影響,以預防研究不精準。[2]但是,去除小鼠周遭的干擾,我們就一定會得到想要的結果嗎?

強迫游泳測試的根本問題

強迫游泳測試於1970年代誕生後,就時常被拿來驗證抗憂鬱劑的效果。21世紀初,其運用愈加盛行。到了2015年,平均每天有一篇精神科論文,是根據這種實驗寫出來的。使用該測試的研究人員,普遍相信小鼠放棄掙扎的行為,是一種絕望的憂鬱表現。所以,當小鼠在水裡被搞到生無可戀,再投以抗憂鬱劑,理論上就能從牠們用藥前後的行為異同,來分析藥效。[3]

唯一的癥結是:沒有人類能參透小鼠的感受。

♪小鼠不會寫信告訴您~ ♪ 今天的海是什麼顏色~ ♪牠的心情又如何~ 圖/Jack Robinson

反省強迫游泳測試的必要性

2019年的《自然》(Nature)期刊,以專文反省採用強迫游泳測試的必要性。畢竟醫藥界多年來的經驗顯示,該測試僅適用於百憂解(Prozac,學名:fluoxetine)等SSRI抗憂鬱劑。SSRI向來能讓小鼠在水中放棄掙扎前,多游一陣子;但其他抗憂鬱藥物,卻未必在小鼠身上造成相同作用。更令科學家困惑的,是有別於人類得長時間服藥才能抑制症狀;小鼠對藥物的反應通常極為迅速。這在在都說明,強迫游泳測試或許只是把小鼠整慘了,又未必使之憂鬱,而且根本不能提供對人類有用的科學數據。[3]

有鑑於此,世界上不少知名藥廠,例如:賣COVID-19快篩劑和諸多醫藥產品的羅氏(Roche)、在嬌生旗下做COVID-19疫苗等藥物的楊森(Janssen),以及從奶粉商亞培分離出來專心製藥的艾伯維(AbbVie)等,近年都已經揚棄強迫游泳測試。[3]

強迫游泳測試只會讓人類與小鼠兩敗俱傷。圖/John Tenniel (Wikipedia)

至於日本實驗裡的小鼠,牠們在為科學奉獻之後,被用二氧化碳安樂死,從此不再遭受人類的折磨。[2]

  

備註:C57BL/6是一種實驗小鼠的品種,在繁衍數個世代之後,產生了具有相異特質的亞種。為了區別這些亞種,C57BL/6後面要加上繁殖小鼠的單位代號。例如:C57BL/6 J的J代表美國「傑克遜實驗室」(the Jackson Laboratory),而C57BL/6 N的N則是指美國「國家衛生研究院」(the National Institutes of Health,簡稱NIH)。[4]

參考資料

  1. PETER RABBIT Funny Scenes Compilation, 5:39 – 5:44 (FRESH Movie Trailers, 2021)
  2. Ueno H, Takahashi Y, Murakami S, et al. (2022) ‘Effect of simultaneous testing of two mice in the tail suspension test and forced swim test’. Scientific Reports, 12 (9224).
  3. Reardon S. (2019) ‘Depression researchers rethink popular mouse swim tests’ Nature, 571, 456-457.
  4. There is No Such Thing as a C57bl/6 Mouse! (The Jackson Laboratory, 2016)
胡中行_96
117 篇文章 ・ 40 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

5

12
3

文字

分享

5
12
3
如果人類的祖先是猴子,為什麼我們沒有尾巴?
暐恩咖啡_96
・2022/02/18 ・3120字 ・閱讀時間約 6 分鐘

尾巴幾乎是脊椎動物的標配,它能幫助魚類游泳、爬蟲類爬行、鳥類飛翔。在哺乳類動物身上,尾巴的功能更是包羅萬象,狗狗用尾巴表達情緒、草食動物用尾巴驅趕蚊蟲,我們的猴子表親甚至能用尾巴抓握東西。

功能多變又實用的尾巴,就好像動物身上的瑞士刀一樣,根本是「居家旅行必備良品」。這麼棒的東西,為什麼人類偏偏沒有呢?這一切還得從人類的起源說起。

人類是從猴子演化而來的嗎?

在大約 6600 萬年前,也就是恐龍經歷隕石浩劫後的 1000 萬年內,具有靈長類生理機能的小型哺乳動物就出現了。牠有一條又長又結實的尾巴,這也許能幫牠在枝條間捕捉昆蟲時,更容易保持平衡。 

阿喀琉斯基猴屬想像圖,這類生物大約生活在五千五百萬年前,可能是靈長類動物最後的共同祖先。 圖 / Wikipedia

隨著時間推移,原始的靈長類動物逐漸演化成雜食性的猴子。這類生物的尾巴特別的靈活又有力,幾乎就像是手腳以外的「第五肢」,使得這群動物在樹梢上的生活更加活動自如。

然而,生物的演化從不停止。大約在2000 萬年前,猴子當中出現了「沒有尾巴」的一支——人猿。牠們的後代包括長臂猿、紅毛猩猩、大猩猩、黑猩猩,當然了,也包含我們人類。配合下圖,你可以看出,人猿在演化成真正的人類以前,尾巴這個構造已經消失了數百萬年,所以人類理所當然長不出尾巴。

約 2500 萬年前,人猿起源於舊大陸猴(Old world monkeys),經過長久的演化與分化形成多個類群,最終,人類與黑猩猩在六百萬年前分家。由上而下依序是:屬於人猿的人類、黑猩猩、大猩猩、紅毛猩猩、長臂猿,以及不屬於人猿的舊大陸猴、新大陸猴、眼鏡猴與狐猴。圖 / 參考資料 1

人類真的沒有尾巴嗎?

生物學上,總有些令人印象深刻的例外會發生。有些人類嬰兒(通常是男性)出生時還帶著小小的胚胎尾巴,這通常不會造成健康上的問題,甚至在有些案例中,這個小尾巴具有肌肉,而且可以動作!

在巴西就有一名 35 週早產的男嬰,出生時長著一條長達 12 公分的細長尾巴,尾巴末端還有一個 4 公分寬的肉球。醫生進行檢查後發現,這個構造僅由組織和脂肪組成、完全沒有骨頭,排除了先天性脊椎畸形的可能,認為這是罕見的「人類尾巴」,在醫學史上大約只有 40 個相同病例的記錄。[2]

巴西一名男嬰出生時長著 12 公分長的尾巴。圖 / 參考資料 2

事實上,每個人都曾擁有過尾巴,只不過,那時你還在媽媽肚子裡。在妊娠期的第 31 至 35 天左右,尾巴長度就會達到人生巔峰,尺寸大概佔胚胎長度的六分之一左右。不久後,尾巴就會停止生長,其中一部分尾巴會被身體吸收掉,另一些部分則退化、癒合成尾椎骨。

雖然人類的尾椎骨退化、失去了大部分原有的功能,但可別以為它是無用的器官!尾椎的前後兩面都有肌肉與韌帶附著,這些構造將骨盆底部的開口大部分封住,避免腹腔內的器官往下掉、造成疝氣,也具有避免失禁的功能。出力時,這些肌肉與韌帶能提高腹腔內的壓力,輔助排尿、提重物、嘔吐、前傾身體等動作。

人類胚胎在發育時是具有尾巴的。圖/ WIKIPEDIA

我們的祖先是怎麼失去尾巴的?

人體內有些基因被認為是「自私的基因」,它們平時唯一的功能便是自我複製,比如 Alu 序列(Alu element)就是個典型的例子,它本身沒什麼用,卻在人類基因裡複製了超過一百萬份,佔據了人類基因組中約 10.7% 的空間,有時還會插進有功能的基因片段裡,造成人體病變或異常。然而某些時候,它們卻能以獨特的方式發揮作用。紐約大學最近的一篇研究就表明,我們的祖先會失去尾巴,就是因為有一段 Alu 序列插入。

這回,被插入的對象是 TBXT 基因,這個基因對於胚胎發育非常重要,它與脊索(脊椎的前身)發育有關。紐約大學的研究團隊發現,無尾的猿類與有尾的猴類有個關鍵的基因差異,那就是 TBXT 基因的其中一段(exon 6)被 AluY 與 AluSx1 前後夾住,形成一個環狀結構,使得 exon 6 基因片段無法正常表現——這很可能就是猿類沒有尾巴的原因!

為了證實這個假設,科學家剔除小鼠基因裡的 exon 6 片段,果真發現小鼠會出現無尾或短尾的特徵!值得注意的是,exon 6 片段被剔除的小鼠表現出了胚胎脊髓畸形的現象,這個現象在人類新生兒身上,也有約千分之一的機率出現,情形嚴重的話會造成下肢癱瘓或大小便失禁,可見沒有尾巴風險極高,但也能合理推測此特徵也伴隨巨大的優勢,否則就無法在殘酷的天擇中延續下來,只不過,科學家對於尾巴消失究竟帶來什麼樣的演化優勢還沒達成共識。

人猿 TBXT 基因的 exon 6 片段被 AluY 與 AluSx1 前後夾住,形成一個環狀結構。圖 / 參考資料 1
exon 6 基因片段被剔除的小鼠出現了無尾或短尾的特徵。圖 / 參考資料 1

所以,如果人類保留了健全的尾巴會怎樣?

如果現代人的尾椎延長、超出身體一大截,搭配上(與其他動物相比)幾乎「衣不蔽體」的體毛,那看起來就像「在屁股上掛串白腸」,畫面太美我不敢看

想要一條功能健全的尾巴,那肯定需要周遭肌肉、韌帶與骨骼的固定與驅動,但是,你還記得尾椎附近的肌肉與韌帶拿去做什麼了嗎?它們在骨盆底部承托著腹腔!我想,如果將它們調離原本的崗位,失禁與疝氣的機會也許會上升,或許人類將不再能夠直立著軀幹追趕跑跳,只能像大多數動物一樣,平時將軀幹水平匍匐於地面,避免肚子裡的東西靠向脆弱的骨盆底部。

現實中難道就沒有尾巴發達、又能常常直立活動的靈長類動物嗎?有的,那就是狐猴

雖然大多數狐猴是屬於樹棲性的物種,但有些狐猴能在兩樹之間連續側跳一百公尺 [3]。另外,還有喜歡生活在地面上的環尾狐猴,牠們每天早晨都會或站或坐,朝向太陽張開雙臂,花些時間將體溫升高,然後成群穿梭在草原上,取食花、果實、葉子或種子,偶爾也吃吃葷,取食昆蟲、小鳥、變色龍,甚至是蜘蛛絲 [4],雜食的習性就和我們的猿猴祖先一樣。

看來,直立活動跟發達的尾巴也是能夠兼得的!如果人類真的有尾巴,或許尾巴高度會成為地位的象徵,於是人們開始用髮蠟把尾巴尖端的毛抓翹,往尾巴噴香水求偶或宣示主權;長輩會要求晚輩放低尾巴,情侶們逛街時也改用勾尾巴取代牽手,這樣就不用擔心流手汗造成尷尬了。

參考資料

  1. The genetic basis of tail-loss evolution in humans and apes | bioRxiv
  2. A true human tail in neonate – ScienceDirect
  3. Ring-tailed lemur – Parc Animalier d’Auvergne (parcanimalierdauvergne.fr)
  4. ADW: Lemur catta: INFORMATION (animaldiversity.org)
  5. What if Humans Had Kept Their Tails? (sciencealert.com)
  6. Archicebus – Wikipedia
  7. Alu element – Wikipedia
  8. TBXT gene: MedlinePlus Genetics
  9. 猿 – 維基百科,自由的百科全書 (wikipedia.org)
  10. 尾骨痛的成因與治療 (chiropractors.com.hk)
  11. Lemurs (Lemuridae) | Encyclopedia.com
所有討論 5
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章

3

12
3

文字

分享

3
12
3
淺談 JWST 的科學意義:探索宇宙深處與塵埃後的外星世界!——認識韋伯太空望遠鏡(四)
EASY天文地科小站_96
・2021/10/21 ・4876字 ・閱讀時間約 10 分鐘

  • 作者/林彥興|清大理學院學士班,努力在陰溝中仰望繁星 

在談完了韋伯太空望遠鏡(JWST)的源起、技術與運行軌道之後,本系列的終章就帶大家一起來了解,天文學家花費上百億美金之後,究竟希望韋伯能為哪些領域帶來突破?

背景圖片/illustris simulation。製圖/林彥興

追尋起源:早期宇宙與星系演化

月亮距離我們大概 380,000 公里,光需要花費 1.3 秒左右才能到達地球,因此我們看到的月亮,是 1.3 秒以前的月亮;同理,我們看到的太陽,是 500 秒以前的太陽;我們看到的仙女座星系,是 250 萬年前的仙女座星系。在宇宙中,我們看得越遠,看到的東西就越古老。某種意義上,望遠鏡就像是一座時光機,可以讓我們一窺宇宙從誕生到現在的演化歷程。

在 1995 年,一組天文學家申請哈伯太空望遠鏡進行一次瘋狂的觀測。他們選擇將哈伯太空望遠鏡對準天空中一片看似什麼都沒有的區域,接連進行了 140 個小時的曝光。他們得到的影像,日後成為天文史上最重要的照片之一,其名為:哈伯深空(Hubble Deep Field)。

哈伯深空影像。圖/Robert Williams (NASA, ESA, STScI)

天文學家們驚訝的發現,這片看似空無一物的區域,其實充滿了數以千計遙遠、古老且黯淡的星系。比起銀河系這種中老年星系,哈伯深空中拍到的許多星系才形成不久,相當的年輕有活力。瘋狂誕生恆星的星系,與現在宇宙中的星系相當不同,非常有趣。望遠鏡就好像時光機一樣,帶我們一窺宇宙過去 130 多億年的演化歷史,而哈伯深空影像,正因此成為早期宇宙與星系演化研究的一個重要里程碑。

然而,當哈伯想要往更遙遠、更古老的宇宙望去的時候,就漸漸顯得力不從心了。原因是典型的星系發出的光主要以可見光為主,但是這些古老星系發出的可見光,在前往地球的過程中,會隨著宇宙的膨脹而發生紅移。越是遙遠的星系,紅移的情況就越嚴重。因此對於非常遙遠的星系來說,它們發出的可見光到達地球時,就已經被宇宙紅移拉到紅外線波段了。因此,只能觀測紫外線到近紅外的哈伯,就很難看到它們。

這時,就是韋伯出場的時候了。專司紅外線波段的韋伯,將能夠幫助天文學家看見宇宙中第一批恆星與星系的形成,以及這些恆星與星系如何與它們周遭的環境互動。

JWST 將幫助天文學家揭密宇宙早期演化的過程,包括宇宙的再游離(Reionization)以及第一批恆星與星系的形成等。圖/STScI

在宇宙學方面,JWST 將能讓宇宙學家深入探索宇宙「再游離(Reionization)」的過程。這是當前早期宇宙研究最重要的課題之一。大霹靂後 38 萬年,宇宙中的氫是以原子(稱為中性氫)的方式存在,然而在當今的宇宙中,多數的氫都是以游離態存在的。天文學家猜測,是宇宙中第一批形成的星系與黑洞發出的強烈輻射,游離了宇宙中的中性氫,才使得宇宙中多數物質的狀態發生了這樣的改變。但是再游離的過程究竟如何發生,現在無論是觀測還是理論都還無法給出統一的答案,仍待 JWST 等新一代望遠鏡的進一步探索。除此之外,就像前文所述,JWST 將能讓我們看到哈伯太空望遠鏡所見更古老的星系,這些仍在襁褓中的星系長有甚麼特色?又是怎麼演化成為我們在現在的宇宙中所看到的星系?這些也是 JWST 將幫助天文學家回答的問題。

宇宙學模擬團隊 THESAN 所進行的宇宙再游離模擬。可以看到星系們像吹泡泡一樣把中性的氫轉變成游離態。影/THESAN Simulations
天文學家模擬韋伯和哈伯以近紅外波段的觀測類星體(Quasar)與其宿主星系(Host galaxy)的效果。可以看到在近紅外波段,韋伯的解析度明顯勝於哈伯,讓天文學家可以清楚的將類星體與其宿主星系區分開來,以利進一步研究。圖/M. Marshall (University of Melbourne)

恆星搖籃:看穿恆星形成區

初生恆星所發射的噴流 HH 212。圖/ESO/M. McCaughrean

恆星是天文物理最古老的研究對象之一。數十年來,天文學家對於恆星的類型、內部結構、演化歷程都有相當詳細的了解。然而,星際間瀰漫的雲氣究竟是如何聚集成一顆一顆的恆星,以及其周圍的行星系統,卻還有很多不清楚的地方。

典型的觀點認為,恆星誕生於巨大分子雲(GMC)之中。當分子雲中的氣體在重力的影響下逐漸聚集,就會形成紊亂而複雜的纖維狀(filament)的結構。

而在這些結構的高密度區域,隨著溫度、壓力與密度不斷提高,最終會點燃核融合反應,形成一顆顆的恆星。雖然大致的圖像有了,但是這整個過程不僅橫跨巨大的時間與空間尺度,更牽涉到磁流體力學、輻射、化學反應鏈等一系列複雜的物理與化學過程,因此上述的許多細節,仍是天文學家們努力研究的題目。

STARFORGE 團隊的天文學家借由超級電腦模擬恆星形成的過程。影/STARFORGE Simulation

然而,由於這些恆星的形成區,往往被濃密的氣體與塵埃所包圍,因此當天文學家使用可見光觀測時,往往只能看到黑壓壓一片,難以窺探雲氣神秘的核心之中,恆星究竟是怎麼演化的。此時,紅外線的優勢再次展現。由於波長較長,紅外線比可見光和紫外線,更能夠穿過層層的星際雲氣而不被吸收,因此可以幫助天文學家直擊初生恆星的核心區域。

哈伯太空望遠鏡利用可見光與近紅外線拍攝的創生之柱(Pillars of Creation)。可以看到利用紅外線觀測時,望遠鏡能夠更好地看穿厚重的星際雲氣。圖/NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

除了恆星本身之外,恆星形成時環繞在其周遭的「原恆星盤(Protoplanetary disk)」也是行星誕生的溫床。利用 ALMA 等次毫米波(介於遠紅外線到無線電波之間)望遠鏡,天文學家發現許多初生的恆星系統旁,都圍繞著濃密的氣體與塵埃盤。不僅如此,它們還發現這些盤面上,常有許多大小不一的間隙(gap),很可能就是來自正在形成中的行星。在少數的系統中,天文學家甚至能夠直接拍攝到這些正在襁褓中的系外行星們。而 JWST 在紅外波段的觀測,將能夠讓天文學家更進一步了解這些行星(尤其是靠近恆星的類地行星們)的形成。

ALMA 在遠紅外線/次毫米波波段拍攝的多個原行星盤(protoplanetary disk)影像。它們是恆星旁殘留的塵埃與雲氣,且被認為是系外行星誕生的搖籃。JWST 將以中紅外線對這類天體進行更多的觀測。圖/ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
中紅外波段存在許多重要的分子的發射譜線,如甲烷(Methane)、氨(Ammonia)、乙炔(Acetylene)等等,這些了解這些分子的分布與含量,能幫助天文學家了解行星的形成時原行星盤的環境,以進一步了解行星的形成機制。圖/NASA, ESA, CSA, Leah Hustak (STScI)

外星世界:凝視太陽系與系外行星

「我們在宇宙中是孤獨的嗎?」

這個問題雖然至今仍沒有答案,但過去 25 年,天文學家對外星世界的認識已經有了巨大的進展。曾經,系外行星是只存在於假想中的天體;但現在,天文學家已經發現了超過 4,000 顆,隨著資料的不斷更新(主要歸功於 TESS 衛星的努力),這個數量還會持續上漲。

想了解系外行星學的發展歷史?這首 Acapella Science 的作品絕對是最棒的入門!

影/acapellascience

但是,天文學家雖然知道這些系外行星的存在,對這些外星世界的了解卻還相當有限,原因是系外行星實在是太小太暗了。對於多數的系外行星,天文學家都只能用一些間接的方法,測量它們的質量、半徑、軌道週期等相對粗略的特性,並且估計這個行星是否處於適合生命生存的「適居帶(Habitable Zone)」之內。

NASA 的 Kepler 與 TESS 望遠鏡是專司以「凌日法」搜尋系外行星的獵手。目前已知大半的系外行星都是由它們兩個發現。但是他們的觀測能夠提供的資訊相對有限。圖/NASA/JPL-Caltech

JWST 強大的能力將幫助天文學家突破困境。它能夠以兩種主要的方式觀測系外行星:一種是趁著系外行星繞行到其母恆星前方時,觀測整個系統的光譜,並找出其中由系外行星的大氣所貢獻的吸收譜線,這種方法被稱為「凌日光譜學 (Transit Spectroscopy)」;另外一種方式是藉由「日冕儀(Coronograph)」遮擋住來自母恆星的光線,直接拍攝並取得系外行星的光譜,這種做法被稱為「直接影像法(Direct Imaging)」。結合這兩種方式,JWST 將能夠讓天文學家對系外行星的認識不再只有多大、多重、多遠這些淺顯的描述,而是能知道大氣的組成、溫度與垂直結構,以及它們隨著季節、軌道半徑等其他因素的變化,深入地了解這些外星世界,甚至是尋找生命可能存在的跡象。

藝術家對 Kepler-1649c 行星的想像圖。圖/NASA

除了遙遠的系外行星之外,JWST 對於太陽系內的觀測其實也能有很大貢獻喔!舉例來說,JWST 擁有的中紅外波段的光譜觀測能力,既然可以分析系外行星的化學組成,當然也可以拿來分析太陽系內的小天體,如小行星、彗星、古柏帶天體等等,補足地面天文台無法觀測中紅外線留下的資訊空缺。此外,對於火星、四大巨行星、以及土衛六泰坦的研究,都是 JWST 可能的觀測目標。

未來精彩可期

從 1996 到 2021,從「新世代太空望遠鏡」到「詹姆士.韋伯太空望遠鏡」,天文學家的超級紅外線太空望遠鏡之夢,走過了漫長而曲折的發展歷程。25 年後的今天(10 月 17 日),JWST 已經搭乘海運抵達位於南美的法屬圭亞那太空中心,準備在 12 月 18 日搭乘亞利安 5 號火箭(Ariane 5),前往日地第二拉格朗日點(L2),以前所未有的性能,展開對宇宙、星系、恆星與行星的深入研究。更重要的是,每當一代更新、更強大的儀器成軍,天文學家不僅期待它回答上述「現有」的問題,更希望它能將人類的視野,開拓至我們從未想過的領域。韋伯究竟會帶來怎樣的驚喜,就讓我們拭目以待!

參考文獻

延伸閱讀

  1. 為何 NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一) – PanSci 泛科學
  2. 史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二) – PanSci 泛科學
  3. 太空巨獸 JWST 升空後的 150 萬里長征—— 認識韋伯太空望遠鏡(三) – PanSci 泛科學
所有討論 3
EASY天文地科小站_96
22 篇文章 ・ 1011 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事