Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

含糖飲料與憂鬱症風險間的關係

營養共筆
・2013/01/23 ・988字 ・閱讀時間約 2 分鐘 ・SR值 450 ・四年級

Credit: CC by JonathanCohen@flickr

有項研究是由國家衛生部,國家環境健康科學研究所和美國國家癌症研究所的研究院院內研究方案的主持。這些研究結果將發表在三月份在聖地亞哥的美國神經病學會第65次年會,但目前只是初步的研究,待有更完整的資料與數據再發表於醫學雜誌。

這個研究有將近264000位超過50歲的人受測者,在研究一開始需調查他們喝飲料的習慣(包括喝含糖或含代糖的蘇打水、果汁、含糖冰茶等)和詳細的飲食習慣。再觀查約十年內這群人是否有被診斷為憂鬱症。

結果顯示,每天喝4罐或4杯的含人工代糖蘇打水比沒有喝的,憂鬱症風險高出30%。若是喝一般含糖飲料則高出22%。人工代糖飲料似乎比含糖飲料誘發憂鬱症風險更高。而喝咖啡的,可以降低10%憂鬱症風險。

含糖飲料或食品可能會稍微提高憂鬱症風險,而喝咖啡卻可以稍降低這個風險。而研究結果建議,若要降低憂鬱症風險,可以減少飲用含糖飲料或用糖飲料來取代。

-----廣告,請繼續往下閱讀-----

研究員說需要更多研究來確認結果,並警告憂患者仍需遵照醫囑。這個研究只是個開端,因體內生化機制不清楚,但確定的是有越來越多的研究人工代糖飲料對人體是不好的。

有一位神經病學專家Kenneth M. Heilman看到這份研究結果並不認同含糖飲料會增加憂鬱症風險,他說「憂鬱症病患渴望甜食」比「含糖飲料造成憂鬱症」的研究證據多,且有證據說憂鬱症的人或有憂鬱症高風險的人會尋求含糖的飲料或食物來自我慰藉。但你永遠不知道是愛吃甜造成憂鬱症或是憂鬱症引起愛吃甜食。

Heilman又說,碳酸或非碳酸的含糖飲料會增加憂鬱症風險,跟喝含糖與低卡含代糖的風險一樣。

後記

「含糖食物飲料」對每個人有不同的意義與作用,心情好時吃糖可以更快樂,心情不好時吃糖可以得到慰藉,經痛時吃糖可以緩解,壓力大時吃糖可以放鬆,低血糖時吃糖可以得到活力……理由不同,但目的都是讓自己更舒服,只要不過度的「嗜甜飲食」,糖對身體與心靈是有益處的。

-----廣告,請繼續往下閱讀-----

但要注意的是,有些人愛吃糖,卻怕胖,選擇用人工代糖取代自然的糖,沒減到肥,反到對健康有害,套句廣告詞:「天然ㄟ尚好」!在做營養衛教時,常強調,盡量 吃食物的原來的樣子,可以選擇吃蘋果就不要吃蘋果派,可以選擇吃鮮魚就不要吃魚丸,可以選擇吃蝦子就不要吃蝦餃、、、生活才會少添加多自然。

原文出處:WebMD
文章標題:Sweetened Drinks Linked to Depression Risk
整理編譯:Sammi

轉載自 營養共筆

-----廣告,請繼續往下閱讀-----
文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
重鬱症警訊:當憂鬱吞噬生活,有解方嗎?
careonline_96
・2025/02/26 ・2260字 ・閱讀時間約 4 分鐘

圖 / 照護線上

「一位近 50 歲的女性重鬱症患者,幾乎已經嘗試過所有抗憂鬱口服藥物,也合併且反覆使用許多相關治療,但療效有限,不是整天躺在家裡,就是有想死的衝動,無法照顧家庭。」振興醫院精神科黃威勝醫師說,該患者在某次急性發作後送醫治療。在接受速效抗憂鬱鼻噴劑治療後效果驚人,不僅情緒顯著穩定,在後續穩定療程下,門診減少許多其他藥物,也開始重拾與小孩正常互動,生活品質明顯改善。

「憂鬱症」是一個常見的情緒障礙通稱,涵蓋不同程度的病程與症狀表現。黃威勝醫師指出,在臨床上,根據嚴重度和症狀表現,憂鬱症可以分為輕度、中度和重度等狀況。「重度憂鬱症」指的是最嚴重的憂鬱症型態,也稱為「重鬱症」,必須符合特定診斷準則。常見症狀包括情緒低落、失去活力、無法集中精神、對原本感興趣的活動失去興趣或樂趣,可能失眠或嗜睡、食慾減退或暴飲暴食。患者會出現各種負面想法,可能感到自責、罪惡感、覺得人生沒有意義,嚴重時可能出現自殺念頭或行為。

不可輕忽的憂鬱症警訊
圖 / 照護線上

部分患者在出現自殺念頭前,會有可觀察到的行為或情緒改變,但也有些患者完全沒有明顯徵兆。黃威勝醫師說,可能的「預警行為」包括整理私人物品與財物、留遺書或交代身後事等;在社群媒體上發布異常訊號,例如張貼告別、回顧過往等遺言性文字或照片;突然與親友聯繫,主動表達道別或感謝;原本情緒低落,卻突然變得異常冷靜,情緒反轉變動不定。若發現相關跡象,請提高警覺,主動關心並儘速尋求醫療幫助!

如果出現強烈自殺念頭,應立即陪同至門診或急診就醫,讓專業醫療人員進行評估與治療。黃威勝醫師說,在自殺高風險期,需有家人或信任的人持續陪伴,並確保患者的環境安全,務必移除尖銳物、藥物等可能造成危險的物品。

-----廣告,請繼續往下閱讀-----
注意警訊恐是輕生前兆
圖 / 照護線上

針對重鬱症,藥物治療非常重要,醫師通常會開立抗憂鬱、鎮靜藥物來穩定情緒。不過傳統抗憂鬱藥物通常需數週才能有療效,對有急性自殺意念與行為的患者無法立即緩解自殺危機。此外,黃威勝醫師表示,根據台灣的資料,約有三分之一的重鬱症患者屬「困難治療型」,這些患者對現有口服藥物反應較差,或需多次調整藥物,且療程較長,大大增加治療難度。若患者對治療反應不佳或出現復發時,醫師會檢視現有口服抗憂鬱藥物,評估是否需要提高劑量、轉換藥物。

即使重鬱患者處於穩定期,且持續用藥與心理治療,還是會有復發風險。黃威勝醫師解釋,「就像感冒痊癒後仍可能再次感染,情緒障礙亦可能在壓力、環境因素或生理變化下再次急性發作。」

黃威勝醫師表示,面對這些重鬱症治療困境,過去是感到很無力的,難以有效阻止急性自殺的風險憾事。然在醫學發展下,近年來已有新突破。研究發現重鬱症患者腦部神經突觸有萎縮狀況,藉由新機轉藥物增強並活化神經突觸功能,能改善憂鬱症狀。目前有速效抗憂鬱鼻噴劑,採用鼻噴方式,經黏膜快速吸收,可以在24小時內改善急性憂鬱症狀,緩解自殺意念。國際大型臨床試驗的結果顯示,過半數的患者在完整四週的鼻噴劑合併口服抗憂鬱劑療程後,症狀可改善至正常,亦有高達75%患者可改善超過一半。

速效抗憂鬱鼻噴劑快速改散憂鬱症狀
圖 / 照護線上

憂鬱症是有多種機制與原因形成的複雜疾病,在急性期發作下,可藉由速效抗憂鬱鼻噴劑快速緩解症狀,再藉由後續不同治療策略,包括口服抗憂鬱藥、重覆經顱磁刺激(rTMS),以及結合心理治療,能幫助重鬱症患者獲得更好的預後並降低復發風險。

-----廣告,請繼續往下閱讀-----

黃威勝醫師建議重鬱症患者身旁的照護者,盡量多傾聽,少給予意見或指導,有時僅僅是待在患者身邊傾聽,就能幫助到患者,陪伴患者並傾聽其心聲,能有效減輕其情緒壓力,對治療過程具有輔助作用。也需多留意患者的生活細節,並陪同就醫,若有自殺前兆應盡速尋求專業幫助。除此之外,積極關懷重鬱症之照護者也很重要,很多重鬱症的照護者與家人終日提心吊膽承受照護壓力,多少都出現了一些身心狀況,呼籲照護者應適時緩解壓力,照顧他人很辛苦,但也要好好照顧與關心自己,避免成為下一個患者。可與診間醫師討論,尋求更適當的治療照護和溝通方式,緩解相關壓力與負擔。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。