0

8
1

文字

分享

0
8
1

雲端是什麼?——《普林斯頓最熱門的電腦通識課》

商業周刊
・2022/03/12 ・3015字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/ 布萊恩‧柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

網路的普及

回想第六章中敘述的電腦運算使用模式,你有一台或好幾台個人電腦,你讓個別應用程式執行不同的工作,例如用 Word 製作文件,用 Quicken 或 Excel 做你的個人財務,用 iPhoto 管理你的相片。這些程式雖可能連結網際網路以取得一些服務,但它們在你的電腦上運轉,你可以不時地去下載一個修補了漏洞的新版本應用程式,偶爾可能得購買一個升級版以取得新功能。

這個模式的本質是,程式和資料都在你自己的電腦上。若你在一台電腦上修改了一個檔案,然後在另一台電腦上需要這檔案,你必須自己做轉移。若你在辦公室或外出旅行途中需要一個儲存於你家中一台電腦上的檔案,那就麻煩了。若你需要在一台視窗個人電腦和一台麥金塔電腦(Mac)上都有 Excel 或 PowerPoint,你必須為兩台電腦各買一個程式。上面說的這些情況,還沒把你的手機包含在內哦。

另一種不同的模式是愈來愈普及:使用瀏覽器或手機去存取及操作儲存於網際網路伺服器上的資訊。Gmail 或 Outlook 之類的郵件服務是最普遍的例子,你可以從任何一台電腦或手機存取你的電子郵件,可以上傳一封在本機上撰寫的郵件訊息,或是下載郵件訊息至本機檔案系統,但多數時候,你把資訊留在提供服務的伺服器上。

你不需要做什麼軟體更新,但不時會有新功能出現。你通常是在臉書上跟朋友保持聯繫或觀看他們的照片,但交談及照片儲存在臉書,不是儲存在你自己的電腦上,這些服務是免費的,唯一可見的「成本」是當你閱讀你的郵件或查看你的朋友在做什麼時,你可能會看到廣告。

-----廣告,請繼續往下閱讀-----

科技未來趨勢——雲端運算

這種模式通常被稱為「雲端運算」(cloud computing),因為網際網路被比喻為「雲」,沒有特定的實體位置,資訊被儲存於「雲端」的某處。

電子郵件和社交網路是最常見的雲端服務,但還有很多其他的雲端服務,例如多寶箱(Dropbox)、推特、領英、YouTube、線上行事曆等等。資料不是儲存於本機,而是儲存於雲端,亦即雲端服務供應商的伺服器上:你的電子郵件及行事曆儲存於谷歌的伺服器,你的相片儲存於多寶箱(Dropbox)或臉書的伺服器,你的履歷表儲存於領英的伺服器等等。

雲端運算示意圖。圖/Pixabay

雲端運算的問世,得力於多個因素的匯聚。個人電腦變得愈來愈強大的同時,瀏覽器也是,瀏覽器現在能夠有效率地執行顯示要求很高的大程式,儘管使用的程式語言是直譯式的 JavaScript。對多數人而言,現在的頻寬及用戶端與伺服器端之間的延遲(等候時間)遠優於十年前,這使得資料的傳送與接收更快,甚至在你輸入搜尋詞時,當即反應你的鍵擊,在你還未輸入完之前,就列出一些建議的搜尋詞。結果是,以往需要一個單獨的程式去處理的絕大多數使用者介面操作,用瀏覽器就能搞定,在此同時,使用一台伺服器去承載大量資料,執行任何複雜運算。這種組織方式也在手機上運作得很好:不需要再下載一款行動應用程式。

以瀏覽器為基礎(browser-based)的系統的反應速度可以媲美以個別電腦為基礎(desktop-based)的系統,並且讓你可以從任何地方存取資料。

-----廣告,請繼續往下閱讀-----

以來自谷歌的雲端「office」工具為例,它提供文書處理器、試算表、以及簡報程式,讓多使用者可以同時存取使用及更新。(譯註:以瀏覽器為基礎的系統又稱為 web-based,或稱「brower-server model」,簡稱 B/S 模式,指的是透過瀏覽器去使用網路上的軟體來執行各種工作;以個別電腦為基礎的系統又稱為 client-based,或稱為「client-server model」,簡稱 C/S 模式,指的是必須在每台電腦上安裝各種軟體來執行各種工作。)

雲端工具的快速崛起

一個受到關心的議題是,這些雲端工具會不會最終運轉得夠好而完全取代以個別電腦為基礎的版本。你大概可以想像得到,微軟非常關心這個,因為 Office 軟體佔該公司營收的相當比重,而 Office 主要在視窗作業系統上執行,微軟的其餘營收大多來自視窗作業系統。以瀏覽器為基礎的文書處理及試算表不需要來自微軟的任何軟體,因此將威脅到微軟的 Offic 及視窗作業系統這兩大核心業務。

目前,谷歌文件(Google Docs)及其他類似的系統還不具備 Word、Excel、及 PowerPoint 的所有功能,但科技進步史中充滿這樣的例子――明顯較差的系統問市,搶走認為此系統已經夠好的新使用者,漸漸侵蝕在位者的市場佔有率,並且持續改進本身的功能。微軟顯然很清楚這問題,實際上,為因應此問題,該公司已經推出雲端版本的 Office 365。

雲端工具的快速崛起。圖/Pixabay

以網路為基礎(web-based,亦即以瀏覽器為基礎)的服務其實對微軟及其他供應商具有吸引力,因為易於採用訂閱收費模式,用戶必須持續付費以取得服務。但是,消費者可能偏好一次性購買軟體,必要時再付費升級。我目前仍然在我的較舊的麥金塔電腦上使用 2008 年版本的 Microsoft Office,它運作得很好(在此應該稱讚微軟),而且,它仍然偶爾獲得安全性更新,因此,我並不急於升級。

-----廣告,請繼續往下閱讀-----

雲端運算仰賴用戶端的快速處理及大量記憶體,以及伺服器端的高頻寬。用戶端的程式是用 JavaScript 語言撰寫的,通常錯綜複雜。JavaScript 程式重度要求瀏覽器更新及快速顯示圖形資料,敏捷反應使用者的動作(例如拖曳)及伺服器的動作(例如更新的內容),這已經是夠難了,難上加難的是,瀏覽器版本與 JavaScript 版本之間的不相容性,需要雲端服務供應商找出傳送程式給用戶端的最佳方法。不過,伴隨電腦運算速度愈來愈快,以及更加遵從標準,這些都在進步中。

雲端運算可以在「於何處執行運算」和「處理過程中把資訊寄存於何處」這兩者之間作出取捨,例如,使 JavaScript 程式與特定瀏覽器脫鉤的方法之一是,在程式本身裡頭包含測試,譬如:「若瀏覽器是 Firefox 75 版,就執行這個;若瀏覽器是 Safari 12 版,就執行那個;若為其他瀏覽器版本,執行別的。」這樣的程式比較大,意味的是,需要更多頻寬來把 JavaScript 程式傳送至用戶端,而且,程式中增加的測試可能使瀏覽器運轉得較慢。另一種方法是,伺服器可以詢問用戶使用的是哪種瀏覽器,然後傳送針對這款瀏覽器撰寫的程式,這程式可能更簡潔,執行得更快,不過,對於原本就小的程式,差異可能不大。

網頁內容可以用不壓縮形式傳送,這樣,用戶端及伺服器端需要的處理工作較少,但需要較多的頻寬來傳輸;或者,用壓縮形式來傳送網頁內容,傳輸時需要的頻寬較少,但兩端需要增加處理工作。有時候,只有一端做壓縮處理,大型 JavaScript 程式經常被壓縮,移除所有不必要的空白,讓變數及函式使用一或兩個字母的名稱,壓縮後的程式是人類看不懂的,但用戶端電腦不在意。

儘管有技術性挑戰,若你總是能連上網際網路的話,雲端運算的優點很多。它們供應的軟體總是最新的,資訊儲存於專業管理的、有大容量的伺服器上,客戶資料隨時都有備份,幾乎沒有遺失的可能。一份文件只有一種版本,不會發生同一份文件在不同的電腦上可能有不一致版本的情形,而且,很容易即時共享文件及通力合作。雲端服務的價格很便宜,個人消費者往往可以免費取得,但企業客戶可能得付費。

-----廣告,請繼續往下閱讀-----

——本文摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

-----廣告,請繼續往下閱讀-----
文章難易度
商業周刊
12 篇文章 ・ 3 位粉絲

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。