0

6
1

文字

分享

0
6
1

保育藍鯨——從追蹤分布範圍、預測出沒位置開始!

TingWei
・2022/03/07 ・3306字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

這是某隻藍鯨在 2019 年 3 月夏末的一周間,在智利巴塔哥尼亞安庫德灣(Gulf of Ancud)移動的縮時影片,棕色軌跡是船隻,藍點代表了藍鯨:

圖/Blue Planet Society,詳細動態影片請到這裡觀看

雖然這圖上的點是實際放大了非常多倍(等比例的話船跟藍鯨都會是看不到的小點點),但也可以看得出來,在這個一周間移動在海灣中,這隻藍鯨似乎反覆在閃避船隻的行跡,掙扎程度不亞於在人來人往的學生餐廳中,踟躕移動想要找到個吃飯的地方。

海洋雖大,卻好像容不下一隻想離船隻遠一點的鯨魚。

這個影片,來自於智利南方大學(Universidad Austral de Chile)所進行的研究。他們試圖以衛星追蹤藍鯨的活動範圍,並且以遙測技術獲取的海洋資料,發展出預測藍鯨分布位置的模型。

-----廣告,請繼續往下閱讀-----

比想像中更難回答:藍鯨去哪兒?

藍鯨(Balaenoptera musculus),是已知最大型的哺乳類動物。目前認為藍鯨至少有 4 個亞種[註1],北大西洋與北太平洋的 B. m. musculus、南極海域的 B. m. intermedia、印度洋與南太平洋的 B. m. brevicauda、北印度洋的 B.m. indica。雖然成體體型超過 20 公尺、體重超過 100 頓重,屬於鬚鯨的藍鯨為濾食者,幾乎完全以小不隆咚的海洋浮游動物磷蝦(euphausiids)為主食。

曾經一度滿布全世界大洋的藍鯨,在 19 世紀末遭受獵殺而至瀕臨滅絕。1966 年,國際捕鯨協會(International Whaling Commission)正式禁止所有藍鯨的獵捕,但至今藍鯨仍被國際自然保護聯盟(International Union for Conservation of Nature, IUCN)列為瀕危物種,目前總數估計約有 5000~15000 隻。而至今日,藍鯨仍面臨許多生存的危機,包括氣候變遷、海洋汙染、海洋噪音以及潛在的船隻撞擊風險等。

廣大的海洋被形容為地球上人所未知的「內太空」,即使像鯨魚是如此龐大的生物,人們對於其活動所知仍然極其有限。更遑論要評估船隻、海洋工程、漁業在海中的擾動,會如何影響這些海洋生物的生存了。

該怎樣著手保育藍鯨等生物的生存?先了解牠們的生存區塊,劃出一張「地圖」或許會是個好主意。然而,身為人類或許可以用地理環境明確區分住家、商業區、市場、餐廳等地,但動物的環境資源利用卻不像人那麼涇渭分明,尤其是在大海之中,潮汐洋流、季節、溫度,都會對海洋環境造成變化。大海拿~麼大,要如何確定鯨魚在哪裡?想找出牠們每個季節的餐桌與秘密基地,那可是個浩大的工程。

-----廣告,請繼續往下閱讀-----

智利海灣,藍鯨的夏日餐桌與船隻交通要道

智利南方大學這次針對藍鯨的研究,不僅文章最前面的短片在國外的社群媒體獲得矚目,也是 2021 年 Altmetric 的前百大研究[註2]。此研究範圍針對智利巴塔哥尼亞北部區域(northern Chilean Patagonia)一系列峽灣、群島等,由曲折長達一萬二千公里海岸線所圍繞的沿海海域(以下簡稱 NCP)。此一區域緯度橫跨南緯 41~47 度,擁有來自南極海域、富含營養鹽的海水與來自河流、冰川的淡水。過去的研究已經發現,NCP 為瀕臨滅絕的東南太平洋藍鯨夏季最重要的覓食與育幼區域,在秋冬季遷徙之前,有許多藍鯨會在這些營養豐富的沿岸海水中活動。

然而,同樣的這個區域也有許多人類的活動。包括非常密集的海上交通,以及大規模鮭魚養殖與其他漁業活動。雖然在該區域並未有相關報告,但這些大型船隻的進進出出,直接或間接的影響,究竟會如何影響藍鯨、會影響藍鯨到什麼程度,亟需進一步的釐清。

團隊從幾個不同的角度收集資料,再加以整合分析。首先,他們自 2004~2019 年間以 Argos 人造衛星追蹤 15 隻春夏季在 NCP 出沒的藍鯨的移動資料[註3],持續追蹤的時間從 8 天到 105 天不等。過去的研究已經發現了,藍鯨的移動位置可能與當時的海洋變化有關。

其次,現今透過衛星遙測可以得知很多海洋基本資料,包括海面溫度等,甚至可以用來推估海洋各區域葉綠素 a 的濃度。葉綠素 a 可以反應了海洋中浮游植物的量,也代表了該區域的生產力。由於藍鯨主要攝食大量的磷蝦,尋覓高密度的磷蝦對於藍鯨吃飯非常重要。而磷蝦則主要進食浮游植物與浮游動物,因此理論上,在高密度的葉綠素 a 出現的區域,隨後不用太久就會出現高密度的磷蝦,也就很有機會成為藍鯨最喜歡的餐廳了。

最後,由於該區域船來船往的,研究團隊還由智利國家漁業與水產養殖服務局(SERNAPESCA)獲得每天進出船隻的 GPS 位置資料。這邊的資訊包括水產養殖船隊、小型漁業、工業漁業與貨船的進出資訊。

-----廣告,請繼續往下閱讀-----

不只是地圖,更是具即時預測潛力的分布模型

實際的建模資部分數學公式有點多,這邊先看看結論好了。簡而言之,以遙測獲得的海洋數據所推估出來的模型,可以一定程度預測藍鯨出沒的位置[註4]。而統計結果發現,水產養殖團隊數量龐大(占有資料的船隻的 78%),對於藍鯨的影響程度也最大;其次是手工漁業,其活動範圍與藍鯨的活動模式最接近。研究人員已經模擬出現有的船隻路線最可能影響到藍鯨的「熱點」,未來如能針對這些熱點作出改進,將是保育行動的重要方向。

此一研究所導出的藍鯨棲地模型,相較於過去常用來估算動物分布區域的模型,有個較大的差別在於,此模型納入了遙測所得的資料,因此未來可以依此較具即時性的推估藍鯨的可能分布區域,甚至作為即時的保育行動的指示。換句話說,以前這類的模型獲得的可能只是一張「地圖」(或許分四季或月份),而加入了遙測資料所能預測的,會更接近當下鯨魚可能出沒的地區。這在未來的保育管理上可以預見將更有幫助、也更加精確。舉例來說,或許可要求船隊在當下資料推估重要「熱點」附近降低船速、提高警覺,甚至保持距離,以避免憾事的發生。[註3]

從經營管理的角度來說,為了有藍鯨會在海灣中覓食,就關閉整個區域的各種船隻活動,既不現實也不合理。但如果能夠具體的了解到敏感物種會出沒在哪些環境中,作出足夠準確的預測、並施行即時對應的管理措施,或許才會是真正能讓人類活動與野生動物保育獲取雙贏的方法。

恰逢世界自然基金會(World Wide Fund for Nature, WWF)於近期在「保護藍色走廊」(Protecting Blue Corridors)的報告書中也發佈了第一張「鯨魚高速公路」地圖,累積了八百多筆的鯨魚遷徙資料。[註5] 希望越來越多的研究與矚目,能讓人類盡快找出在大海中與鯨豚的共存共容之道,也祈求這些脆弱的海洋智慧物種們,能夠耐心等待到那一天的到來。

註解

  1. 目前也有人認為尚有亞種智利藍鯨(Chilean blue whale),但似乎尚未正式提出學名命名。
  2. Altmetric Top 100 2021 毫無意外有 98 篇都跟 COVID-19 有關。
  3. 在鯨魚身上放 Argos 標籤,資料累積自 2003~2019 年,時間看起來很長,但可以追蹤 15 隻藍鯨還是很多了!
  4. 智利並未有相關的新聞,但近幾年的確有一些鯨豚直接遭船隻撞擊而死亡的案例,如 2019 年英國就有長達 17 公尺的長鬚鯨被撞擊後一路帶到港口的新聞
  5. 中文的解說可見 about 鯨豚
  1. Bedriñana-Romano, L., Hucke-Gaete, R., Viddi, F. A., Johnson, D., Zerbini, A. N., Morales, J., … & Palacios, D. M. (2021). Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Scientific reports, 11(1), 1-16.
  2. 臺灣百種海洋動物圖鑑-藍鯨-臺灣百種海洋動物 – 海洋委員會海洋保育署全球資訊網 (oca.gov.tw)
  3. https://fb.watch/bhMc-iB1Rs/
  4. Top 100 2021 – the Old School Remix – Altmetric
  5. Animation shows week in life of blue whale as it tries to avoid fishing ship congestion | The Independent
  6. Whale on vessel’s bow ‘killed by ship strike’ – BBC News
  7. ‘Astonishing’ rise in blue whale numbers – CBBC Newsround
  8. Giants in Traffic | American Scientist
  9. Stressful animation shows blue whale dodging hundreds of ships while trying to feed | Live Science
  10. Blue Whale | Whale Watching Handbook (iwc.int)

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
TingWei
13 篇文章 ・ 15 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
鯨魚為什麼歌唱?它們的歌聲可以用來探測海底地形?——《五感之外的世界》
臉譜出版_96
・2023/09/20 ・2132字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

一九九○年代,冷戰終於結束,蘇維埃政府在海中布下的潛水艇威脅也隨之消散,於是海軍提供克拉克與其他專家機會,讓他們透過 SOSUS 的水下麥克風觀測、記錄大海裡的各種聲音。透過聲音頻譜——也就是 SOSUS 系統將接收到的聲音轉換為視覺圖像——克拉克無庸置疑地看到了藍鯨正在歌唱的跡象。

光是第一天克拉克就發現,單一個 SOSUS 感測器所記錄下的藍鯨叫聲比過去所有科學文獻所記載的加起來還要多。大海中充斥著鯨魚的歌聲,而這些聲音則來自無比遙遠的彼方。克拉克估算,記錄下他聽見的那股歌聲的感測器,距離聲音的主人有兩千四百公里之遠。藉由位於百慕達的水下麥克風,他竟能夠聽見遠在愛爾蘭的鯨魚歌聲。

鯨魚的歌聲可以傳得很遠,整個大海中都充斥著鯨魚的歌聲。圖/Giphy

於是他說:「當時我心想:『羅傑的想法沒錯。』我們實際上真的可以探測到橫跨整個海洋盆地的鯨魚歌聲。」對於海軍的分析專家來說,這些聲音就是他們每天工作都會遇到的正常現象,而這些聲音與工作內容無關,所以根本不會被標記在聲音頻譜上,也因此就被忽略了。然而對克拉克來說,這卻是令他茅塞頓開的驚人發現。

穩定規律的「歌聲」其實是一種探測手段?

雖然藍鯨與長須鯨的歌聲能夠跨洋越海,卻沒人知道鯨魚是否真的會在如此遙遠的距離下互相溝通;畢竟牠們很有可能只是在用極大的音量對附近的同類示意,只是音波剛好傳到了很遠的地方去而已。不過克拉克又指出,鯨魚會一次又一次地不斷重複同樣的音頻,甚至也會精準維持音與音之間的間隔長度。鯨魚會在浮出水面呼吸時停止歌唱,回到水中繼續歌唱卻也會落在剛剛好的拍子上。他說:「所以牠們唱歌並不是隨興而至的舉動。」這種現象令他想起了火星探測車為了傳送資料回地球所發出的那種重複的連續訊號。假如人類想設計出能夠跨越海洋進行溝通的訊號,大概也會想出類似藍鯨歌聲的形式吧。

-----廣告,請繼續往下閱讀-----

鯨魚歌聲或許也有其他用途。牠們發出的每個音都能持續好幾秒,而其波長更是好比足球場的寬度。克拉克曾問過他在海軍的朋友,假如他有發出這種聲音的能力,可以拿來幹嘛?

「那我就能摸透整個海洋。」他的朋友如此回答道。這話的意思是,他能夠藉此刻畫出深海的地景,透過傳至遠方的次音波回音,他就能辨識出海底山稜與海床的位置。地球物理學家也肯定能運用長須鯨的歌聲來了解各處的地殼密度。那麼,鯨魚到底用這種聲音來做什麼呢?

鯨魚似乎可以透過歌聲的回音辨識出海底山稜與海床的位置。圖/pixabay

克拉克從鯨魚的動作中看出了答案;透過 SOSUS,他發現藍鯨出現在冰島與格陵蘭之間的極地水域中,一路蜂擁直奔——還是該說是鯨擁?——熱帶地區的百慕達,旅途中一路歌唱。他也看過鯨魚在深海的群山間左彎右拐,在幾百英里間的深海地景之中蜿蜒前進。「看到這些動物的移動方式,就會感覺牠們大腦裡似乎有著以音波構成的海洋地圖。」他如此說道。

他也猜測,鯨魚在長長的一輩子裡,會不斷累積大腦中的聲音記憶,隨之擴增儲存在大腦裡的海洋地圖。克拉克也還記得,曾有位資深海軍聲納專家告訴他,大海裡每個地方都有它專屬的聲音。克拉克告訴我:「他們說:『讓我戴上耳機,我不用看就能直接告訴你現在位於拉布拉多還是比斯開灣的海域。』而我就想,假如人類累積了三十年的經驗就能做到這個地步,何況是演化了一千萬年的動物呢?」

-----廣告,請繼續往下閱讀-----

漫長的迴響~不同時間尺度下的認知

不過關於鯨魚聽力的尺度,還是有令人費解之處。鯨魚的叫聲確實可以傳遞到很遠的地方,但卻也很花時間;在海裡,音波一分鐘只能傳五十英里(約八十公里)遠,因此假設一隻鯨魚聽見另一隻鯨魚在一千五百英里(約二四一四公里)之外發出的叫聲,這隻鯨魚得在半小時以後才能聽見對方的歌聲,就像天文學家觀測到的星光其實是恆星在很久很久以前散發出的光芒一樣。假如某隻鯨魚想探測五百英里(約八百零四公里)之外那座山的位置,牠得等上十分鐘才能接收到自己叫聲的回音,這感覺起來似乎有點荒謬。

然而各位想想,藍鯨在水面上的心跳一分鐘約為三十下,潛入水下後卻會下降至一分鐘只跳三次。這麼一想,鯨魚生命中的時間尺度想來一定與人類相當不同吧。倘若斑胸草雀能夠在單一個音裡就聽見以毫秒為單位的美麗音頻,也許藍鯨分辨同樣潛藏在聲音中的祕密訊號的時間尺度則是分或秒。若要想像鯨魚的生活樣貌,「你得發揮想像力,以完全不同的次元思考。」克拉克對我說道。

他認為這兩種體驗的差異應該就像先用玩具望遠鏡注視夜空,再改用美國太空總署架設在太空的哈伯太空望遠鏡一覽星羅棋布的壯麗星辰。一想到鯨魚,他的世界彷彿就變大了,不管是空間還是時間的尺度,都更加遼闊。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

9
3

文字

分享

0
9
3
人類首次偵測到藍鯨的心跳!在深海的頻率原來這麼慢
Peggy Sha/沙珮琦
・2019/12/06 ・1940字 ・閱讀時間約 4 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

藍鯨是種非常矛盾又迷人的存在,牠們居住在深深的海中,卻需要呼吸新鮮空氣;體型稱得上是目前世上已知最大的生物,卻幾乎僅需依靠小不隆咚的磷蝦為生。

最近,科學家還發現了一個關於藍鯨的有趣事實,那就是:牠們的心跳超、級、慢

迷人又巨大的藍鯨,原來擁有極慢的心跳頻率。圖/By NOAA Photo Library – anim1754, Public Domain

想聽見藍鯨的心跳?你需要神奇吸盤

修但幾勒,你說要偵測藍鯨的心跳?那要用怎麼個測法?我們既不能把牠抓起來、也沒辦在海面上用聽的,難不成要派個潛水員下海跟蹤牠(喂)

-----廣告,請繼續往下閱讀-----

為了順利解開藍鯨的心跳秘密,由史丹佛大學的海洋生物學家 Jeremy Goldbogen 所帶領的團隊,特別打造了客製化心電偵測裝置 (ECG)。心跳會在皮膚表面引起極小的電學變化,而 ECG 所做的,便是捕捉這些變化,並將其放大描繪成心電圖。

以時間為單位,記錄心臟的電生理活動,便可得到心電圖。圖/wikipedia

研究員將帶有電極的感測器裝在吸盤中,而後利用 6 公尺長的碳纖維桿子,將器具裝在加州蒙特利灣一隻 15 歲的藍鯨身上。他們特製的器具除了能偵測心律,還帶有 GPS 追蹤器,在記錄下各種數據後,會脫落、浮上海面,再由研究人員追蹤回收、分析數據。

這些新型器材,不僅能讓研究人員研究鯨魚的生活,也不會過度打擾牠們,對於鯨魚來說,就像是輕輕地拍了牠們的肩膀一樣。

-----廣告,請繼續往下閱讀-----

問鯨能有幾多愁,恰似兩下心跳每分鐘

最後,這些器具收集到了約 8 個半小時的數據,研究團隊發現到,藍鯨的心跳頻率變化極大,從一分鐘跳 2 下到一分鐘 37 下都有可能。當鯨魚下潛時,牠的心律也會跟著大幅下降。在下潛的時候,心律約是一分鐘 4-8 下,偶爾會一路下降到一分鐘 2 下。

不過,為什麼牠們的心臟要跳得這麼緩慢?一般而言,維持較低的心律有助海洋哺乳類保存氧氣,讓牠們可以在水面下待更長的時間。

不過啊,科學家們看到數據後的感想是:這也實在是太慢了吧,這遠低於科學家最初的預估──每分鐘 11 下。(鯨魚表示:11 太多了,2 還差不多)。更驚人的是,即便是進行捕食這種需要耗費大量精力的事情時,藍鯨的心律也不過 8.5 下/每分鐘,拜託,牠們吃飯的時候可是得衝進磷蝦群中,大大張開嘴巴一口吞下磷蝦呢!

不過,藍鯨的心律也不是一直這麼慢,當逐漸上浮時,牠的心律會重新上升。到達海平面時,牠的血液流動會變得較快,努力再充氧 (reoxygenizing),為下一次的下潛做準備,而被偵測的鯨魚在此階段的心跳,紀錄可達巔峰的一分鐘 37 下,這麼快速的心律,基本上已經達到了鯨魚心臟的極限。

-----廣告,請繼續往下閱讀-----

藍鯨的心律在下潛時會較慢,上升時則較快。圖/研究圖片

你以為一分鐘 37 下已經是最極限的事了?才不呢!藍鯨心臟從慢速跳動到快速跳動,兩者間的轉換其實非常快速,有的時候只需要 1、2 分鐘內就可以轉換完成,而牠們進行這種轉換的頻率其實還挺高的。若真要比喻,這種感覺就像是你在躺椅跟百米衝刺中反覆切換,而牠們竟然可以日復一日地從事這樣的轉換。

世上最大的心臟,還藏著各種未解的謎題

藍鯨身型最大可以到 30 公尺長、200 噸重,可想而知,牠們心臟也超大顆,目前發現過最大的藍鯨心臟約 200 公斤重,快要跟一台高爾夫球車一樣大。

目前最大的鯨魚心臟約重 200 公斤,血管大到可以讓人爬進去。圖/引用自《dailymail》新聞照片

-----廣告,請繼續往下閱讀-----

藍鯨的心臟有非常靈活的主動脈弧 (aortic arch),可以讓牠們在心跳沒有劇烈跳動的情況下,維持 90% 的血液,而後緩慢地釋放,這或許是為什麼心臟可以跳得這麼慢的原因。

而對於藍鯨的心跳,其實還有著很多需要被解答的秘密,像是:牠們的神經系統是如何控制這種快速的心律變化?而抹香鯨這種一次可以下潛一個小時以上的鯨魚,牠們心臟又在做什麼呢?

科學家們正打算四處蒐集更多鯨魚心律的資料,說不定可以更了解這些巨大又神秘的生物。

參考文獻:

  1. J. A. Goldbogen, D. E. Cade, J. Calambokidis, M. F. Czapanskiy, J. Fahlbusch, A. S. Friedlaender, W. T. Gough, S. R. Kahane-Rapport, M. S. Savoca, K. V. Ponganis, P. J. Ponganis (2019) Extreme bradycardia and tachycardia in the world’s largest animal PNAS https://doi.org/10.1073/pnas.1914273116
  2. Blue Whale Hearts May Beat Only Twice a Minute During a Dive nytimes 2019.11.27
  3. A Blue Whale Had His Heartbeat Taken for the First Time Ever — And Scientists Are Shocked livescience 2019.11.27
  4. A blue whale’s heartbeat has been recorded for the first time – and the results are fascinating CNN 2019.11.26
  5. With suction cups and lots of luck, scientists measure blue whale’s heart rate reuters 2019.11.28
-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。