3

0
0

文字

分享

3
0
0

如何用生物地理學理論找到賓拉登

鄭國威 Portnoy_96
・2011/05/05 ・1570字 ・閱讀時間約 3 分鐘 ・SR值 601 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

美國追了十年的賓拉登(Osama bin Laden),蓋達(基地)恐怖組織領袖,在5/2號於巴基斯坦的阿伯塔巴德被美國海豹部隊幹掉了。許多人開始討論賓拉登之死的政治影響,不管是在主流媒體上還是網路部落格中,死掉的賓拉登–當然,有人不相信–現在可是最「活躍」的討論主題。然而賓拉登為何能夠躲過美軍長達十年的追蹤?又為何最後會在阿伯塔巴德這個中型城市,而非一般以為的沙漠洞穴中被發現?

2009年2月17發佈的MIT International Review期刊上有一篇研究現在突然受到熱議,因為這篇題為「Finding Osama bin Laden」的論文當初就預測了賓拉登的所在地,而事後看來,竟然蠻準的!

這篇論文由UCLA的Thomas W. Gillespie 跟 John A. Agnew兩位地理系教授帶領另外五位地理系研究生共同完成,他們應用Google 地球以及一般用來預測空間互動、動物遷徙路徑跟植物散佈區位的理論,對賓拉登的資料進行分析。這兩個理論分別是距離衰退理論(Distance-decay theory)跟島嶼生物地理學理論 (island biogeography theory)。簡單來說,根據這兩個理論,研究團隊認為賓拉登不可能離開根據地太遠,也不會離群索居,而是會住在城市裡。

研究團隊根據距離衰退理論,以賓拉登最後一次確定出現的地點為圓心,也就是阿富汗東部靠巴基斯坦的Tora Bora,並以全球為規模,在Google地球上計算出賓拉登在不同範圍出現的可能性,如下圖:

根據這個圖,賓拉登在台灣逛夜市的機率是12%左右

根據上圖,賓拉登在阿富汗或巴基斯坦的機率超過八成,而最有可能的區域則是巴基斯坦西北,靠近阿富汗的的聯邦直轄部落地區(FATA)中的Kurram,機率高達98%。之所以這樣研判,是因為整個聯邦直轄部落地區從1970年代起就不受中央政府控制,是武力伊斯蘭的大本營,而Kurram三面被阿富汗邊界包圍。然後搭配上賓拉登的個人資料,來研判他可能前往的區域。

研究中蒐集到的資料包括:他有6呎4吋高,每天需要洗腎,偏好物理性保護,希望享有隱私,有一小隊保鏢隨伺,傾向於不處於空照看得到的地點。根據這些資料,他們研判賓拉登的住所應該是頗高的樓層、有連上電力網路或是大發電機、圍牆起碼有三公尺高、房舍之間有距離、房間超過三間、外頭植有大樹用來遮蔽視線。

雖然最後賓拉登是在巴基斯坦的阿伯塔巴德被發現,而不是Kurram,不過阿伯塔巴德也在300公里半徑內,在這範圍內賓拉登存在機率為88.9%。另外,研究人員也說「靠近或是就住在大城市裡,可以降低賓拉登行蹤被曝露,或是在小型城市或獨立建築內遭受軍隊襲擊的機會。」他們分析在小型城市裡安全性跟隱私保障都不佳,也缺乏結構完善保護效果好的住所,所以賓拉登不可能如同一般傳說中躲在洞穴中,而該在大城市裡頭。

研究者將300公里半徑內的城市當作島嶼,應用島嶼生物地理學理論,判斷賓拉登可能的遷移範圍。最後再縮小範圍,選定Kurram區的Parachinar城,然後用空照圖找出符合測寫的住宅,只有三棟如下:

雖然沒有真的預測到賓拉登最後地點,但是這研究還是令人驚豔。在資料不多的情形下,研究幾乎準確描述了賓拉登可能出沒的城市大小、住所狀況,大大縮小了偵搜方向。儘管,這些資料跟預測對美國軍方來說只是皮毛,但是就一份由教授指導,研究生主力完成的小論文來說,實在值得鼓勵。

最後,我實在很想問問美國政府,難道不知道把敵人丟進海裡最後敵人都會復活的好萊塢真理嗎?

資料來源:
Osama bin Laden, sasquatch and human biogeography
How A 2008 Geography Class Used Satellites To Find Osama Bin Laden…Sort Of
Geographers Had Predicted Osama’s Possible Whereabouts

文章難易度
所有討論 3
鄭國威 Portnoy_96
247 篇文章 ・ 721 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
0

文字

分享

0
4
0
SmartReading 科普閱讀力大賽——打造新世代自主閱讀指標,培養學子適性成長!第三屆頒獎典禮暨第四屆賽事啟動!
PanSci_96
・2022/09/26 ・3811字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

108 課綱開啟全新閱讀素養時代。

科學素養不再侷限於考試的解題方法,學生閱讀科學讀物時,如何在氾濫資訊中找到高品質、適合學習程度的科學素材,是教育現場至關重要的課題。

臺灣師範大學 SmartReading 團隊將 AI 讀物難度分級技術,透過測驗、選書、閱讀、讀後回饋四大功能,完整記錄孩子的學習歷程,提升中小學生科普閱讀動機,成為自律自主的科普學習者。

臺灣師範大學於 110 年至 111 年間,與國科會、新北市、臺中市等單位合作,連續辦理三屆「SmartReading 科普閱讀力大賽」,每屆競賽歷時半年。競賽組別以國小三年級至高中一年級共分七個組別。參賽學校涵蓋臺北市、新北市、臺中市、臺南市、高雄市、花東等十九縣市,報名參賽人數累計八千餘人。

國立臺灣師範大學第四屆科普賽將擴大辦理,邀請PanMedia泛科學馮瑞麒總經理、數感實驗室賴以威教授、臺大科教中心賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章。圖/國立臺灣師範大學

由系統建置適合學生閱讀的兩千多本科普讀物

競賽期間,參賽學生使用「SmartReading 適性閱讀」系統,透過精準快速的中文閱讀能力診斷,將閱讀程度與讀物難度適配。藉由系統已建置,適合國小三年級至高中一年級的 2,180 餘本科普讀物,不僅能激勵其學習動機,更可有效提升選擇的效率,降低科學閱讀恐懼。第三屆科普閱讀力大賽不受疫情波擾,採實體與線上兩種施測方式,於 111 年 5 月份圓滿完成賽事。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。圖/國立臺灣師範大學

臺師大宋曜廷副校長表示,數位閱讀邁向新時代,團隊使用「SmartReading 適性閱讀」系統作為科普賽競賽平台,期望在知識爆炸的時代,藉由測驗、選書、規劃的「智慧閱讀三步驟」,培養學子的跨領域閱讀力與閱讀習慣,讓學生們手握知識大門的鑰匙,成為自律自主的「SmartReader」。

科普閱讀競賽的三大特色

一、適配閱讀能力與圖書難度,擴增多元書籍與文章素材

參賽學生首先須參加中文適性閱讀能力診斷(DACC),依據診斷結果,配合其當前閱讀能力的科普推薦書單,讓學生選書有依據、個人化。本競賽目前共有「推薦書單」、「推薦文章」等 2 種閱讀素材,主題包含植物/動物、數學、天文地科、物理/化學等 8 大類別。「推薦文章」功能,則與「PanSci 泛科學」及「數感實驗室 Numeracy Lab」合作評選,當前提供 600 餘篇線上科普短文,競賽期間提供已超過 4,000 人次的瀏覽次數。

二、綜合性閱讀五力分數,開啟學生全方位閱讀力

本競賽賽程為期半年,學生透過「前測、閱讀任務挑戰、後測」三個階段。競賽期間,系統詳細記錄每週閱讀歷程,並產出線上「閱讀五力分數」報表。自主規劃閱讀期間計算為「規劃力」;讀後評量填答結果計算為「執行力」;閱讀多元書籍類別的結果計算為「博學力」;閱讀單一書籍類別的深化成果則計算為「精進力」;前後測成長結果計算為「成長力」。將閱讀能力數據化、可視化。

三、閱讀任務徽章,深化學生文化素養與科普閱讀興趣

本競賽內建徽章蒐集系統,參賽者於指定時間依據提示完成閱讀任務,即可獲得期間限定的特色科普徽章。任務內容包含閱讀指定的書單及文章類別、世界性科普節日、科學家生辰、台灣重要節慶與其他隱藏任務。本屆各年級累計獲得徽章達 20423 枚,因設計活潑及任務類型多樣,大受參賽者好評。

競賽結果發現學生的閱讀偏好

一、科普閱讀參與,國小男性最踴躍

活動期間參賽者共完成約 21,153 本的書籍評量。以不同學習階段來看;國小參賽者整體閱讀平均本數為 24 本,男生平均閱讀本數為 28 本,女生平均閱讀本數為 20 本。國、高中參賽者因科普讀本難度較高,需要較長的閱讀時間及一定的科學基礎知識,國中參賽者整體平均閱讀書籍數為 10 本;高中參賽者中女性平均閱讀本數多於男性,整體平均閱讀書籍數為 7 本。

總閱讀量/本人數平均閱讀量/本
全體學生21,1531,10019
8,05150516
13,10259522
國小學生17,47971624
6,47432520
11,00539128
國中學生3,45935510
1,4611669
1,99818911
高中學生215297
116148
99157
活動期間參賽者共完成約 21,153 本的書籍評量。表/國立臺灣師範大學

二、學生偏好閱讀動物/寵物類與地球生態/天文類書籍

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類(男生 28.19%、女生 27.91%)最能引起學生的閱讀興趣(如:《昆蟲老師上課了!:吳沁婕的超級生物課》、《小島上的貓頭鷹》、《神奇樹屋》等系列)。在次要類別,男女皆喜好生態/生命科學類的書籍(男生 15.20%、女生 16.87%)。

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類最能引起學生的閱讀興趣。在次要類別,男女皆喜好生態/生命科學類的書籍。圖/國立臺灣師範大學

三、參賽學生閱讀歷程的質與量均佳,表現令人驚豔

本次參賽學生皆積極參與競賽。

以三年級組第一名得主,臺北市立大同國小的林靖軒同學為例,競賽期間閱讀書籍本數高達 383 本,書籍讀後評量的通過率更高達 95%,書籍不僅讀得多,更是能讀得要領。

四年級組第一名為第二次參賽的新北市信義國小謝秉言同學,本次競賽期間共閱讀 427 本書。

其中五年級組為本次競爭最激烈的一組,臺北市立長春國小的黃葦川同學以及高雄市立集美國小的吳勁毅同學,兩者僅以極小的分數差距位居第一及第二名。

此外,第一次參與競賽的高雄市立正義國小的孫政遠,競賽期間閱讀 281 本書籍,通過率達到 97%。

四、教育主管機關、學校師長及家長支持鼓勵,帶動學生優異表現

新北市教育局致力於推動智慧閱讀教育,不遺餘力,成果豐碩。本屆競賽全台共 2,104 人報名參與,全國賽獎項獲獎學生共計 36 人,其中新北市得獎學生便囊括 14 位,表現相當亮眼。

家長與學校師長共同陪伴,使得學生能專注於本次競賽,並有相當卓越的成果,例如新北市康橋國際學校、臺中市明道中學、臺中市葳格國際學校、臺北市東山中學等校,皆因全力推廣閱讀活動,才能有優異的競賽成果。以新北市康橋國際學校國中部為例,此次七年級組參賽者,全國賽前5名得主中,康橋中學就獲有 3 名的佳績。

臺師大華語文與科技研究中心洪嘉馡教授說明第三屆科普閱讀力大賽成果。圖/國立臺灣師範大學

第四屆科普閱讀力大賽即將開跑

延續前三屆廣受好評之科普賽事,第四屆科普賽將擴大辦理,邀請「PanMedia 泛科知識股份有限公司」馮瑞麒總經理、「數感實驗室 Numeracy Lab」賴以威教授、「國立臺灣大學科學教育發展中心」賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章,預期第四屆科普閱讀力大賽將能讓全球讀者有更高品質的閱讀體驗和更充實的閱讀收穫。

活動詳情請參閱官方網站
新聞聯絡人:高等教育深耕計畫辦公室——鄭德蓉 02-2366-0916 #111

2

4
2

文字

分享

2
4
2
「科學家也需要 Art!」持續破解果蠅大腦神經迴路的李奇鴻
研之有物│中央研究院_96
・2022/04/11 ・6084字 ・閱讀時間約 12 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐宇甜、黃曉君、簡克志
  • 美術設計/林洵安、蔡宛潔

神經科學與視覺

我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。

李奇鴻是國際知名的神經科學家,研究神經迴路如何產生視覺來引導動物行為。圖/研之有物

技術帶動神經科學研究

神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。

「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。

隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」

因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。

「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。

李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:

  1. Computation level(運算):神經系統在做的事,如分辨顏色、觀察東西移動、辨認物體是圓是方、是蘋果或橘子等。
  2. Algorithm level(程序):神經系統的操作方式、程序怎麼做。 
  3. Implementation level(實行):神經系統如何透過神經元、神經網路來達成這個程序。

李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」

視網膜感知系統怎麼運算?

關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。

近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。

關於視網膜感知系統的運算機制,過去 HR 理論和 BL 理論都只猜對其中一種方向(打勾處)。資料來源/Current Biology

Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,這個信號會被延遲(時間 τ),接著右邊的光感應神經元收到訊號,兩者的訊號會同時到達下游的神經細胞(X),訊號將會相乘,生成運動訊號。
  2. 當有非偏好方向(從右到左)視覺刺激出現,兩個訊號會在不同的時間到達,不會生成運動訊號。

Barlow-Levick(BL)模型:從兔子電生理研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,接著右邊的光感應神經元收到訊號,但它為抑制訊號且會被延遲(時間 τ),左邊的訊號會先到達下游的神經細胞,生成運動訊號。
  2. 當非偏好方向(從右到左)視覺刺激出現,左、右兩個光感應神經元的訊號會在相同時間到達,刺激訊號和抑制訊號互相抵銷,不會生成運動訊號。

持續分析果蠅大腦的神經迴路!

近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」

李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。

「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。

2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。

科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!

李奇鴻實驗室所發現的顏色及空間接受域雙拮抗神經迴路。R1-R6 是吸收頻率範圍較廣的光接收器(輸出刺激訊號),R7 是吸收紫外光的光接收器(輸出抑制訊號),R8 是吸收綠光或藍光的光接收器(輸出刺激訊號)。從 R1-R8 接收光,輸出到神經細胞 Dm8 之後,會形成顏色拮抗效果。此外,相鄰的 Dm8 之間透過特殊的氯離子通道 GluClα 中介,會產生側向抑制作用(Lateral inhibition),形成空間拮抗效果。資料來源/Current Biology

老師是怎麼走上研究大腦神經科學這條路呢?

「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」

因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。

後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。

博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。

之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。

每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。

老師在美國的研究很順利,那是什麼契機才決定回臺灣呢?回來後是否有不適應之處呢?

「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」

剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。

我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。

雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。

我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!

不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。

老師覺得美國的研究環境有哪些優點?希望將什麼樣的新觀念、新風氣帶進臺灣呢?

「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」

國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。

國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。

重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?

分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。

現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。

做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。

老師提到工作上需要 Art,科學家的 Art 是指哪些部分?可以說明得更詳細嗎?

「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」

科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。

如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。

當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。

我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。

李奇鴻說,科學家必須創造有用的知識,也就是會改變做事和想事情方法的知識。至於要選擇創造什麼知識,需要用 Art 來判斷。圖/研之有物

老師在國外的實驗室時是如何帶領研究團隊呢?對年輕的科學家有什麼樣的期待嗎?

「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」

自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。

所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。

有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。

以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!

當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。

當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!

學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。

其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!

延伸閱讀

所有討論 2
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook