0

7
1

文字

分享

0
7
1

回首人類與病毒的「無限之戰」——歷史上第一個被消滅的傳染病:天花

科學月刊_96
・2021/11/01 ・5067字 ・閱讀時間約 10 分鐘

  • 作者 / 蔣維倫|泛科學 PanSci 專欄作家、故事專欄作家、udn 鳴人堂專欄作家、前國衛院衛生福利政策研究學者。喜歡虎斑、橘子、白底虎斑和三花貓。

天花是一種病狀駭人,致死率極高的傳染病,主要透過接觸、飛沫傳染的方式傳播。病人的唾液、血液、水泡液,甚至是脫落的皮屑、結痂、排泄物等,都會帶有具感染力的病毒。18 世紀時,英格蘭出現了「曾罹患牛痘者,不會染上天花」的說法,而一位叫詹納的醫師設計了天花攻毒試驗,發現這項說法是正確的。距今 200 多年前,詹納使用的天花疫苗,內容物為牛痘病毒;而現代各國庫藏的天花疫苗,裡頭的痘病毒,都是正痘病毒屬的成員。這些疫苗所產生的抗體,都能辨認、中和致命的天花病毒,進而達到疫苗的效果。

沒人知道天花什麼時候來到地球上的,它最早出現在埃及法老王的木乃伊身上,留下了類似天花的皮疹痕跡,這表明天花可能存在了 3000 年以上。而在各國史料中,關於天花的記述也相當豐富,例如 4 世紀的中國(東西晉朝代)、7 世紀的印度、10 世紀的土耳其,都有類似天花病人的病徵敘述。而隨著國際貿易、帝國戰爭、歐洲殖民,天花伴著商人、士兵、殖民者的腳步,逐漸成為全球性的傳染病(表一)。

表一/科學月刊提供
拉美西斯五世(Ramesses V.),可發現最早的曾得過天花、在皮膚留下痘瘢的記錄。圖/Public Domain, Wikimedia Commons
約 1585 年,墨西哥阿茲提克文化中描繪天花病人的圖像。圖/Public Domain, Wikimedia Commons

但為什麼天花會為人類所忌憚?原因在於得病後超高的死亡率,以及死前駭人的病徵。

天花的病程和病徵

當一般人感染天花後,最初會出現發高燒、頭痛、背痛,並有嘔吐症狀,為時約 2~4 天。其後進入出疹階段,並開始有傳染力,患者的舌頭和口腔會出現紅色斑點,之後惡化成潰瘍、裂開後散播大量病毒。此時臉部、四肢開始出現點狀、鼓起來的疹子,並在 24 小時內擴散到全身[註1]

而到了疾病的下個階段,這些紅疹會漸漸形成水泡,裡頭充滿濃稠的不透明液體,且水泡中心通常會有凹痕。這些水泡會明顯隆起、形成膿疱,猶如皮下埋著豌豆一樣,通常摸起來的觸感為圓型、結實。

-----廣告,請繼續往下閱讀-----

最後則會進入痊癒、結痂、結痂脫落階段,但也得要到結痂全部脫落,病人才沒有傳染力,從發病到結痂痊癒,病程約 3 週。即便結痂脫落後,病人的皮膚上,仍會有褪色的疤痕,是一項相當獨特的病徵。

感染天花的患者,平滑、圓形且中央略凹的紅疹為天花獨特的病徵。圖/Public Domain, Wikimedia Commons

天花的嚴重性和傳染方式

天花除了病徵相當怵目驚心外,它的致死性更驚人——每 10 名患者中,約有 3 人會因天花而亡,而且直到今日,人類仍無有效的治療方法。而即使是康復,也可能喪失視力,或出現永久性臉部疤痕等殘疾。

天花主要可透過接觸、飛沫傳染的方式傳播。病人的唾液、血液、水泡液,甚至是脫落的皮屑、結痂、排泄物等,都會帶有具感染力的病毒。也就是說,只要和病人待在同一個空氣循環的空間,或碰觸患者曾用過的器皿,都可能染上天花。據估計,天花的 R0 約 3.5~6[註2];粗略計算後可以發現,在最糟糕的情況下,只要一名患者的傳播鏈向外傳播 6 層,就可能會有超過 4 萬人被感染。

由於天花在各大洲都是普遍的流行病(大洋洲除外),在 1970 年代疫苗普遍接種之前,每年遭受天花感染的人數可超過 1500 萬人,其中 200 萬人會因天花而死。兇惡的破壞力、難以控制的傳染力,使得天花成為每個時代的人類最害怕的傳染病之一。

-----廣告,請繼續往下閱讀-----

天花病毒的真面目?

天花的病原體是天花病毒(variola virus),長的像顆橢圓形的卵或磚塊形狀,大小約 350 奈米(nm)×270 奈米,在病毒界裡,算是體型較大的病毒,具有一條線性、雙股 DNA 鏈。

天花病毒屬於痘病毒科(Poxviridae)正痘病毒屬(Orthopoxvirus)家族的成員,其血緣相近的親戚還有牛痘病毒(cowpox virus,18 世紀最早的疫苗所使用的病毒)、痘病毒(vaccinia virus,現代天花疫苗所使用的病毒)等。人類是天花病毒的唯一宿主,而這種極度挑食的個性,也成了它最大的弱點。

天花病毒在電子顯微鏡下的照片。圖/Public Domain, Wikimedia Commons

人類的第一支疫苗——牛痘

與天花纏鬥數千年後,人類發現「曾罹患天花者,不會再次染上天花」的現象,因此在 16 世紀的東、西方,都出現「人痘」的記載。在中國和印度,會將天花患者病灶組織的粉末,吹進健康人的鼻腔;在蘇格蘭地區,健康兒童的手腕會繫上一條被患者汙染的麻線。而過了 200 年,在英國的牧場裡,開始流傳著一種奇異的傳說。

牛隻也有自己的天花,會令牠們的乳房上長出痘斑,而這種流行於牛隻的疾病,叫「牛痘」(cowpox)。牛痘的病原體——牛痘病毒,是天花病毒的近親,它們的外殼、成分、基因都很像。而當地人也發現,僅有和牛親近、幾乎每天都與牛群生活的農夫們,會意外地感染牛痘,且在罹病後幾乎能完全康復。也因此在 18 世紀的英格蘭,開始有了「曾罹患牛痘者,不會染上天花」的傳說,而這個說法,被一位叫詹納(Edward Jenner)的醫師聽到了。

-----廣告,請繼續往下閱讀-----

為了驗證這項傳說的真實性,詹納設計了一場天花的攻毒試驗。他在 1796 年 5 月 14 日劃傷一名 8 歲男童的手臂,並在傷口裡沾染了牛痘病人膿疱的組織液,刻意讓男孩感染牛痘;同年 7 月,他故意讓受試者接觸天花患者的組織,試圖讓他被傳染天花,然而,男孩卻沒有罹病。1798 年,詹納整理了 23 名感染牛痘的患者,其後就能免疫天花的報告,自那刻開始,人類首次有了強大、安全的武器,可以和天花展開終局之戰。

詹納於 1798 年 5 月 14 日的疫苗接種。圖/Public Domain, Wikimedia Commons

正痘病毒家族的交叉保護

正痘病毒屬家族的成員,有個少見但重要的特性。它們的結構蛋白具有高度保守性、共享抗原等特徵,亦即它們的表面蛋白質結構、型態相似,人體若對這類病毒產生了抗體,就能彼此交叉保護。舉例而言,若接種了由痘病毒所製成的疫苗,其產生的抗體,也能同時辨認、中和,並阻止其他正痘病毒屬的病毒感染,例如天花、猴痘(monkeypox virus)等[註3]

200 多年前,詹納使用的天花疫苗,內容物是牛痘病毒;而現代各國庫藏的天花疫苗,裡頭的痘病毒,都是正痘病毒屬的成員。這些疫苗所產生的抗體,都能辨認、中和致命的天花病毒,進而達到疫苗的效果。以臺灣疾病管制署手上的天花疫苗為例,是將痘病毒注射於綿羊表皮,在病毒感染羊隻、大量繁殖後,再抽出高濃度的病毒組織液,經後製、真空冷凍乾燥,得到可長期保存的微黃或灰白色粉狀團塊,待要注射前再泡以特定液體溶解即可。由痘病毒製成的疫苗,對抗天花的保護力預估約 95%。

人類 vs 天花,人類兩次剿滅天花之戰

天花病毒雖然難纏、兇惡,但它卻有幾個極大的弱點。

-----廣告,請繼續往下閱讀-----
  1. 容易診斷的臨床特徵
  2. 感染症狀明顯,發燒期傳播力才明顯增加
  3. 人類是天花病毒唯一的宿主。因此只要透過徹底的公衛策略,例如「出現症狀、立刻疫調,隔離所有接觸者」、「越多人接種疫苗越好」等方式,就能掃除唯一宿主族群內的天花病毒。

1950 年代,人類開發出凍乾、粉末狀的新劑型天花疫苗。此種疫苗無須冷藏、能長期保存、耐運輸,而且可以誘發強大的體液和細胞免疫反應。這種躍進式的全新技術,帶給各國消滅天花的可能性。

較為富裕的地區在很早就已消滅天花,例如北美和歐洲分別在 1952 和 1953 年根除境內的天花;而臺灣則是在 1955 年後,境內再無天花病例。1959 年,世界衛生組織(World Health Organization, WHO)首次啟動了根除天花計畫。不幸的是,這場全球運動最終因缺乏資金、人員,和政府的承諾而成效不彰,使得天花在 1966 年仍然在南美、非洲、亞洲等地定期爆發。

1967 年,WHO 和各大國重新承諾,提出第二次天花根除計畫。不僅蘇聯和美國捐贈了超過 1.5 億劑疫苗,而當時分叉針頭亦被開發出來,簡化了輸送並減少所需的疫苗量。此外,再加上病例監測系統的建立、大規模疫苗接種運動,讓人類消滅天花的可能性逐漸提升。

對抗天花的環狀包圍策略

WHO 團隊最初的目標,是讓每個國家的疫苗接種人口達到 80%,以「群體免疫」的方式,直接斷絕病毒傳播的機會。但在實際執行後卻發現,此策略在富有、疫苗充足的國家,確實可行;但在貧困、缺乏疫苗的國家裡,幾乎無法在短時間內辦到。

-----廣告,請繼續往下閱讀-----

例如公衛科學家在奈及利亞,就遇到疫苗不足的現實,因此在苦思之後,他們首次採用了「環狀包圍」(ring vaccination)接種策略。由於天花可為「接觸」和「飛沫」傳染,因此一聽到發病的消息,團隊就全速趕往現場進行疫調、分類,依「接觸的親密度」區分出風險,並依風險程度、盡速接種疫苗:

  • 接觸「患者」的族群(contacts),例如患者家人、醫護人員,或探病過的親友等。
  • 接觸「接觸患者族群」的族群(contacts of contacts),例如上述族群的親友、鄰居或同事等。

儘管奈及利亞的疫苗覆蓋率不到 50%,但團隊仍用此法成功消滅了境內的天花,後來此法更被沿用到近年伊波拉疫苗在非洲的三期臨床試驗,也順利拯救眾多生命。

最後一例天花

WHO 的天花根除計劃取得了穩步進展。於 1971 年,天花在南美洲被根除,隨後是亞洲(1975 年),最終一塊仍有天花的大陸是非洲。

一位名為馬阿林(Ali Maow Maalin)的索馬利亞醫院廚師,是最後一個因自然感染(被其他患者傳染)而得到天花的病人。1977 年 10 月 12 日,他和兩名天花患者共乘汽車,從醫院前往當地的天花辦公室。10 月 22 日,他開始發燒,起初這些症狀被誤診為瘧疾,然後再次誤診為水痘。10 月 30 日,終於被正確診斷出患有天花,而後被隔離並順利康復。在康復後,馬阿林餘生跟隨醫護消滅各式傳染病,並於 2013 年在消滅小兒麻痺的行動中染上瘧疾離世。隨著馬阿林康復,非洲也在 1977 年宣告終止天花。經過縝密的調查,1980 年,WHO 正式宣布天花絕跡,自此再也沒有發生過天花的自然感染案例。

-----廣告,請繼續往下閱讀-----

最後一例之後的意外

然而不幸的是,馬阿林卻不是最後一例天花患者。

1978 年,在英國伯明翰大學醫學院(University of Birmingham Medical School)工作的醫學攝影師帕克(Janet Parker),於 8 月 11 日感到不適,於 8 月 15 日出現皮疹,但再過 9 天,才被確診為天花;並於 9 月 11 日去世,成為人類最後一名天花患者和死者。而帕克辦公室的下一層,剛好是微生物學系,且那裡也正好在研究天花。據調查顯示,帕克很可能是通過大樓通風管道,或其他方式感染病毒,造成了遺憾。

此意外,讓人類再次被天花的威力所震撼,其病毒樣本被集中在最高防護等級的實驗室。1981 年,僅有美、俄、英、南非,4 個國家等級的實驗室擁有天花病毒樣本;1984 年,南非和英國銷毀或移送了他們擁有的天花病毒,於是美、俄,就成了最後兩個擁有天花病毒的國家,國際衛生組織目前仍固定招開專家會議討論天花病毒的存廢問題,但至今尚無定論。

天花成功地被上世紀科學家剿滅,仰賴徹底的疫調、隔離、疫苗。反觀身處 21 世紀,對抗 2019 冠狀病毒疾病(COVID-19)疫情的我們,儘管手握有史以來最強大的疫苗,但仍有人不願接種,或挑三揀四。回顧過往、檢視今日,赫然發現,助長疾病蔓延的不是科學,而是人性,實在令人不勝唏噓。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:天花的皮疹,多分布在臉及四肢末端;而水痘的疹子是全身廣泛地出現。
  • 註 2:R0 值為流行病學的重要指標之一,全名為「基本傳染數」。其定義為在某種傳染病疫情中,一名遭病毒感染的患者從確診到康復/死亡期間,能再感染他人,引發新病例的預期數量,例如新冠病毒(SARS-CoV-2)Delta 變異株的 R0 約為 5~7 左右
  • 註 3:此特性非絕對,對於其他病毒家族而言,人體不見得也有類似的交叉抗體保護。如能引起感冒的普通冠狀病毒抗體,可能無法對抗新冠病毒。

延伸閱讀

  1. Signs and Symptoms of smallpox, US Centers for Disease Control and Prevention, 2016/06/07.
  2. 疾病介紹-天花,中華民國衛生福利部疾病管制署,2018 年 12 月 12 日。
  3. Edward A. Belongia and Allison L. Naleway, Smallpox Vaccine: The Good, the Bad, and the Ugly, Clinical Medicine & Research, Vol. 1(2): 87–92, 2003.
  • 〈本文選自《科學月刊》2021 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
文章難易度
科學月刊_96
249 篇文章 ・ 3607 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
如何靠溫度控制做出完美的料理?
鳥苷三磷酸 (PanSci Promo)_96
・2024/06/21 ・2766字 ・閱讀時間約 5 分鐘

本文由 Panasonic 委託,泛科學企劃執行。 

炸雞、牛排讓你食指大動,但別人做的總是比較香、比較好吃?別擔心,只要掌握關鍵參數,你也可以做出完美料理!從炸雞到牛排,烹調的關鍵就在於溫度的掌控。讓我們一起揭開這些美食的神秘面紗,了解如何利用科學的方法,做出讓人垂涎三尺的料理。

美味關鍵 1:正確油溫

炸雞是大家喜愛的美食之一,但要做出外酥內嫩的炸雞,關鍵就在於油溫的掌控。炸雞的油溫必須維持在 160 到 180℃ 之間。當你將炸雞放入熱油中,食物的水分會迅速蒸發,形成氣泡,這些氣泡能夠保證你的炸雞外皮酥脆而內部多汁。

水的沸點是 100℃,當麵衣中的水分接觸到 160℃ 的熱油時,會迅速汽化成水蒸氣。這個過程不僅讓麵衣變得酥脆,也能防止內部的雞肉變得乾柴。

-----廣告,請繼續往下閱讀-----

如果油溫過低,麵衣無法迅速變得酥脆,水分和油脂會滲透到食物中,使炸雞變得油膩。而如果油溫過高,水分會迅速蒸發,使麵衣變得過於硬或甚至燒焦。

油炸時,麵衣水分會快速汽化。圖/截取自泛科學 YT 頻道

美味關鍵 2:焦糖化與梅納反應

另一道美味的料理——牛排。無論是煎牛排還是炒菜,高溫烹調都會帶來令人垂涎的香氣,這主要歸功於焦糖化反應和梅納反應。

焦糖化反應是指醣類在高溫下發生的非酵素性褐變反應,這個過程會產生褐色物質和大量的風味分子,讓食物變得更香。而梅納反應則是指醣類與氨基酸在高溫下發生的反應,這個過程會產生複雜的風味分子,使牛排的色澤和香氣更加迷人。

要啟動焦糖化反應和梅納反應的溫度,至少要在 140℃ 以上。如果溫度過低,無法啟動這些反應,食物會顯得平淡無味。

-----廣告,請繼續往下閱讀-----
焦糖畫反應。圖/截取自泛科學 YT 頻道


焦糖化反應與梅納反應。圖/截取自泛科學 YT 頻道

油溫與健康

油溫不僅影響食物的風味,也關係到健康。不能一昧地升高油溫,因為每種油都有其特定的發煙點,即開始冒煙並變質的溫度。當油溫超過發煙點,會產生有害物質,如致癌的甲醛、乙醛等。因此,選擇合適的油並控制油溫,是保證烹調健康的關鍵。

說了這麼多,但是要怎麼控制溫度呢?

各類油品發煙點 。圖/截取自泛科學 YT 頻道

科學的溫度控制

傳統電磁爐將溫度計設在爐面下,透過傳導與熱電阻來測溫,Panasonic 的 IH 調理爐則有光火力感應技術,利用紅外線的 IR Sensor 來測溫,不用再等熱慢慢傳導至爐面下的溫度計,而是用紅外線穿透偵測鍋內的溫度,既快速又精準。

而且因為紅外線可以遠距離量測,如果甩鍋炒菜鍋子離開爐面,也能持續追蹤動態。不會立即斷開功率關掉,只要鍋子放回就會繼續加熱,效率不打折。

-----廣告,請繼續往下閱讀-----

好的溫度感測還要搭配好的溫度控制,才能做出一流的料理。日本製的 Panasonic IH 調理爐,將自家最自豪的 ECONAVI 技術放進了 IH 爐中。有 ECONAVI 的冷氣能完美控制你的室溫,有 ECONAVI 的 IH 調理爐則能為你的料理完美控溫。

有 ECONAVI 的 IH 爐不只省能源、和瓦斯爐相比減少碳排放,更為料理加分。前面說了溫度就是一切的關鍵,但是當我們將食材投到熱鍋中,鍋中的溫度就會瞬間下降,打亂物理與化學反應的節奏,阻止我們為料理施加美味魔法。

所以常常有好的廚師會告訴我們食物要分批下,避免溫度產生太大變化。Panasonic IH 調理爐,只要透過 IR Sensor 一偵測到溫度下降,就能馬上知道有食材被投入並立刻加強火力,讓梅納反應與焦糖化反應能持續發揮變化。而當溫度回到設定溫度,Panasonic IH 調理爐也會馬上將火力轉小,透過電腦 AI 的迅速反應,掌握溫度在最完美區間不劇烈起伏。

不僅保證美味關鍵,更不用擔心油溫超過發煙點而導致油品變質,讓美味變得不健康。

-----廣告,請繼續往下閱讀-----
透過 IR Sensor 精準測溫並提升火力。圖/截取自泛科學 YT 頻道
IH 調理爐完美控溫 。圖/截取自泛科學 YT 頻道

舒適的烹飪環境

最後,IH 爐還有一個大優點。相比於瓦斯爐,因為沒有使用明火,加熱都集中在鍋具。料理過程更安全,同時使用者也不會被火焰的熱氣搞得心煩意亂、汗流浹背,在廚房也能過得很舒適。而且因為熱能集中,浪費的能源也更少。

因為沒有使用明火,料理過程安全又舒適。圖/截取自泛科學 YT 頻道
Panasonic IH調理爐火力精準聚集在鍋內。圖/Panasonic提供

為了更多的功能、更好的效能,我們早已逐步從傳統按鍵手機換成智慧型手機。一樣的,在廚房內,如果你想輕鬆做出好料理,同時讓烹飪的過程舒適愉快又安全。試試改用 Panasonic IH 爐,一起享受智慧廚房的新趨勢吧!👉 https://pse.is/649gm5

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 306 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 53 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4400字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1224 篇文章 ・ 2294 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。