3

14
1

文字

分享

3
14
1

是否有密碼之盾能夠擋住量子電腦之矛?後量子密碼學的前世今生——匯智安全科技陳君明董事長專訪

科技大觀園_96
・2021/09/30 ・3614字 ・閱讀時間約 7 分鐘

密碼學這門學問對於多數的人來說可能並不是那麼熟悉,但現在構築我們的資訊世界基礎的其實就是密碼學,小到我們生活中的娛樂與通信,像是電子信件的收發、在社群網站上發文、線上消費時要用的電子支付,大到國家保護、商業資訊防護,像是銀行的資料防護系統,甚至到現在很活躍的區塊鏈技術,這些技術的核心都要仰賴密碼學為基礎去做發展。

現代密碼學是數學、電機、資訊的結合應用,其中包含了大量的資訊原理,以及數學理論,所以也可以說是數學在實務應用上的分支,隨著科技的發展,人類計算機的算力不斷的提升,相關的應用也持續在發展。

生活中處處可見密碼學的蹤跡。圖/pixabay

不過近年來量子運算 (Quantum computing) 技術的快速進展,也開始對現今使用的加密與解密系統帶來衝擊。其實早在1994年彼得.秀爾(Peter Williston Shor)這位數學家提出的量子質因數分解演算法(Shor演算法或是Shor公式)時,就宣告了只要人類能夠使用量子電腦,將可以快速突破 RSA 這種我們目前生活中的主流演算法(RSA為發明此演算法的三位科學家姓氏的第一個字)。

時至今日,不管是 google 的「Sycamore」還是IBM的「IBM Q System One」甚至是中國科學技術大學的「九章」,都在告訴我們量子電腦的應用在可預見的未來是會出現的,為了應對量子跳躍性的計算能力,世界上也展開了次世代資安技術的研究與規格制定,這其中以基於密碼學為發展基礎的後量子密碼學 (Post-Quantum Cryptography, PQC) 以及以量子技術為基礎的量子密鑰分發 (Quantum Key Distribution,QKD) 為目前較有名的加密方式。

不過由於 QKD 目前在開發上還有很多問待解決,美國國家安全局(NAS)目前並不建議使用這種加密系統,所以這次主題將集中在 PQC 的討論上,我們就請到匯智安全科技陳君明董事長,和我們談談究竟 PQC 怎麼從眾多加密方式中脫穎而出,而 PQC 領域現在發展的狀況又是如何呢?

陳君明董事長。圖/陳君明提供

早在40年前就開始的後量子密碼學,最近開始進入到大眾的視野中

陳君明表示,在過去幾十年來的加密算法主要是以質因數分解(RSA)與離散對數問題 (DSA.ECC…) 為安全基礎下去設計,直到目前為止也都是如此,但就像前面說的,1994 年 Shor 演算法 (shor’s Algorithm) 的出現,就已經預知了量子電腦的出現將可以快速突破這類利用特定「群」來設計的演算法。

不過雖然說量子電腦在破解 RSA 有非常大的優勢,但他能發揮優勢的也只是在這樣特定的領域,所以科學家們為了要防禦量子電腦在未來造成的衝擊便開始往 PQC 的方向走,而數學專業的陳董事長也剛好就是在這個時期觸到密碼學,原本就不希望數學的專才侷限在純數學的領域的關係,便順水推舟的往密碼學方向做發展。

量子電腦的出現,大幅挑戰密碼學的安全性。圖/flickr

PQC 一開始的出現並不完全是為了要防禦量子電腦的攻擊(畢竟當時也還沒發明出量子電腦),他比較像是科學家們為了要加強我們的公鑰加密系統去做的研究,說的簡單一點,就是數學家們不斷的在開發數學工具 (演算法) 來讓我們的加密系統可以有更好的防護效果,而 PQC 是其中一個大分支,直到近期量子電腦的出現 PQC 才開始變得更主流。至於原本前面談到的RSA、ECC…過去主流的演算法也因此開始變得較為沉寂,畢竟未來會被破解的機會比較大,研究者們自然比較不會往這些舊的加密領域做太多投入。

PQC如何對抗量子電腦?

在談到如何對抗量子電腦前,我們必須先了解量子電腦到底強在哪裡。在大眾的想法中量子電腦聽起來非常厲害,應該是運算能力比我們目前使用的傳統電腦強上非常非常多的新形態電腦,但這樣的說法其實只說對了一半。

量子電腦強大的是他在解特定種類的數學問題時,可以有極為強大的運算能力(百萬倍以上),也就是說量子電腦在做特定的事情上非常厲害,但在這些事情之外,量子電腦基本上並不會比傳統電腦更有優勢,而 PQC 就是繞過量子電腦優勢去設計的加密演算法。

「嚴格來說,利用代數結構的特性,來讓量子電腦無法發揮他的優點。」陳君明和我們說明道,但了解了PQC之所以能防禦量子運算的原因後,你大概就會發現,其實 PQC 並不是一種單純的演算法,而是「繞開量子電腦算力優勢」這種策略下出現的演算法的總稱。

目前美國國家標準技術研究院 (NIST) 已於 2016 年啟動了後量子密碼學標準化流程,並向世界公開徵求演算法,經由透明且嚴謹的程序來篩選出適合的國家標準,說的簡單一點,做為 PQC 領域領頭羊的 NIST,會先提供一個演算法的基本規則,讓大家投稿自己的演算法,接著公開這些算法讓大家去互相破解,逐步篩選出夠強的演算法,就像提供一個演算法的PK擂台,留下夠強的演算法進入下一輪篩選,2017 年通過初審的的演算法有69組,進入第二輪(2019)的有26組,晉級第三輪(2020)的有7組勝選組和8組敗部組,而NIST也將在 2022 到 2024 年經由競賽的結果,來公布國家標準的草案。

「這些數學工具(演算法)基本上都不太一樣,其中lattice是比較被看好的算法,不過真的要說誰最強並不準。」陳君明和我們說明道,在演算法的驗證過程中,要去證明一個算法是安全的其實不太可能辦到,反之我們要證明他不安全是相對容易的,所以在密碼學領域中,能夠經過千錘百鍊留下來的算法更能證明自己的安全性,同時也比較能受到大家的信任。

所以在今年底或明年初,NIST將會公布獲選的演算法,彼時就會知道未來將由哪種算法來代表PQC領域帶著世界繼續前進。

PQC這麼早就有了為什麼到現在才開始用呢?

PQC 的好處是不需要使用到量子力學(技術與設備條件較為嚴苛),僅使用現有的傳統電腦套用函數庫,即可完成加密系統的運作且能防禦量子運算的威脅。那你可能會問,如果 PQC 這種解法這麼好用,為什麼到近年才開始成為顯學呢?當然前面有說到量子電腦的出現推了 PQC 一把,但實際上 PQC 有一個比較明顯的問題,那就是加密使用的金鑰非常巨大。

前面有說到現行使用的大宗加密方式有 RSA 和 ECC 等方法,他們的大小約為 2048 bit 上下,算是比較小的,運算上較為便利。但 PQC 的金鑰可能會大上千倍以上,這樣在存儲與運算上需要的門檻也就會有所提升。所以以過去十幾二十年前硬體存儲能力與算力的水平還不夠強的情況下,PQC 這樣的加密方式在實用上是比較麻煩的,但到了現代我們硬體有了大幅度的提升,配合上演算法的優化,PQC 的使用就沒有像過去那麼麻煩了,換句話說,現在 PQC 能走上時代舞台某個程度上也是水到渠成的結果。

PQC將如何進入我們的生活

在文章的開頭有說到,密碼學在我們的生活中是構築資訊世界的基礎,現在要將舊的算法轉換為新的算法肯定會有轉換的過渡期,也正因為密碼系統的應用面實在太廣了,所以要更新現行的公鑰加密系統會是一個非常浩大的工程。

舉例來說,最近一次大規模更換算法約在 2000 年左右,當時美國決定採用 AES 算法,各大相關企業光是將部分加密方式採用新的方法就花了近十年的時間去做調整。

同理,陳董事長認為,這次要轉換為PQC系統所需要花費的時間可能也要十年以上,但這並不代表PQC就難以執行或是還要很久才派上用場,反之可以做更靈活的應用,最簡單的方法便是將原本的資訊做風險分級,分級最高的就使用PQC來做加密,而風險分級較低的就使用原始的加密方式去做分配就是一個比較實用的做法。

隨著 NIST 的相關標準的完善,許多大企業也開始跟進 PQC 的使用,像 J.P. Morgan 在近期也已經在未來的時程表上標示準備開始導入 PQC 系統,也隨著越來越多的單位開始使用 PQC 加密系統,相應的 PQC 技術與相關產品也會應運而生。

你我都正在參與這場後量子密碼時代的揭幕,你可以不知道 PQC 背後的複雜數學原理,但我推薦各位讀者務必認識一下,當大家都在說量子電腦多強多猛的時候,世界上早就有一群科學家準備好 PQC 這張盾,來面對接下來量子運算的衝擊。

面對量子運算的衝擊,科學家已做好準備。圖/pixabay

參考文獻

文章難易度
所有討論 3
科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
2

文字

分享

0
1
2
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(nitial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

4
3

文字

分享

0
4
3
從「工人智慧」到「人工智慧」——《普林斯頓最熱門的電腦通識課》
商業周刊
・2022/03/13 ・3569字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

  • 作者/ 布萊恩·柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

人工智慧的開端

在電腦發展之初的二十世紀中期,人們開始思考可以如何用電腦來執行通常只有人類才能做到的事情,一個明顯的目標是玩西洋跳棋和西洋棋之類的棋盤遊戲,因為這領域有個優點,那就是有完全明確的規則,並有一大群感興趣且有資格稱為專家的人。

另一個目標是把一種語言翻譯成另一種語言,這顯然困難得多,但更為重要,例如,在冷戰時期,從俄文到英文的機器翻譯是很要緊的事。其他的應用包括語音辨識與生成,數學與邏輯推理,做決策,及學習過程。

這些主題的研究很容易取得資助,通常是來自美國國防部之類的政府機構。我們已經在前文中看到,美國國防部對早期網路研究的資助有多珍貴,它引領出網際網路的發展。人工智慧的研究也同樣受到激勵及慷慨資助。

我認為,把 1950 年代及 1960 年代的人工智慧研究形容為「天真的樂觀」,應該是公允的。當時的科學家覺得突破就快到來,再過個五或十年,電腦就能正確地翻譯語言,在西洋棋比賽中擊敗最優的人類棋手。

我當時只是個大學生,但我著迷於這個領域和潛在成果,大四時的畢業論文就以人工智慧為主題。可惜,那篇論文早已被我搞丟了,我也想不起當年的我是否也抱持相同於當時普遍的樂觀態度。

但是,事實證明,幾乎每個人工智慧的應用領域都遠比設想的要困難得多,「再過個五或十年」總是一次又一次被端出來。成果很貧乏,資金用罄了,這領域休耕了一、二十年,那段期間被稱為「人工智慧之冬」。

網際網路發展成未來趨勢。圖/Pexels

把專家的判斷規則,直接寫成一堆判斷式的「工人智慧」階段

到了 1980 年代和1990年代,這個領域開始用一種不同的方法復耕了,這方法名為專家系統(expert systems)或規則式系統(rule-based systems)。

專家系統是由領域專家寫出很多規則,程式設計師把這些規則轉化為程式,讓電腦應用它們來執行某個工作。醫療診斷系統就是一個著名的應用領域,醫生制定研判一名病患有何問題的規則,讓程式去執行診斷、支援、補充,或理論上甚至取代醫生。

MYCIN 系統是早期的一個例子,用於診斷血液感染,它使用約 600 條規則,成效至少跟一般醫生一樣好。這系統是由專家系統先驅愛德華.費根鮑姆(Edward Feigenbaum)發展出來的,他因為在人工智慧領域的貢獻,於 1994 年獲頒圖靈獎。

專家系統有一些實質性的成功,包括顧客支援系統、機械維修系統以及其他焦點領域,但最終看來也有重大限制。

實務上,難以彙集一套完整的規則,而且有太多例外情況。這種方法未順利擴大應用於大量主題或新問題領域,需要隨著情況變化或了解的改進,更新規則,舉例而言,想想看,在 2020 年遇上一名體溫升高、喉嚨痛、劇烈咳嗽的病患時,診斷規則該如何改變?這些原本是一般感冒的症狀,或許有輕微的併發症,但很可能是新冠肺炎,具有高傳染性,且對病患本身及醫療人員都非常危險。

擺脫「工人智慧」,讓電腦能自學——機器學習的基本概念

機器學習的基本概念是對一種演算法給予大量的例子,讓它自行學習,不給它一套規則,也不明確地編程讓它去解決特定問題。

最簡單的形式是,我們為程式提供一個標記了正確值的訓練集(training set),例如,我們不試圖建立如何辨識手寫數字的規則,而是用一個大樣本的手寫數字去訓練一套學習演算法,我們對每個訓練資料標記其數值,這演算法使用它在辨識訓練資料時的成功及失敗來學習如何結合這些訓練資料的特徵,得出最佳辨識結果。

當然,所謂的「最佳」,並不是確定的:機器學習演算法盡力去提高得出好結果的機率,但不保證完美。訓練之後,演算法根據它從訓練集學到的,對新的資料進行分類,或是預測它們的值。

監督式學習——人類教電腦看見特徵,由演算法來算出規則

使用有標記的資料(labeled data/tagged data)來學習,此稱為監督式學習(supervised learning)。大多數監督式學習演算法有一個共通的架構,它們處理大量標記了正確類別(正確值)的例子,例如,這文本是不是垃圾郵件,或者,這照片中的動物是哪種動物,或者,一棟房子的可能價格。演算法根據這個訓練集,研判能讓它得出最佳分類或做出最佳預測的參數值;其實就是讓它學習如何從例子做出推斷。

我們仍然得告訴演算法,哪些「特徵」能幫助做出正確研判,但我們不對這些特徵給予權值或把它們結合起來。舉例而言,若我們試圖訓練演算法去過濾郵件,我們需要與垃圾郵件內容有關的特徵,例如類似郵件用詞(「免費!」)、已知的垃圾郵件主題、怪異字符、拼字錯誤、不正確的文法等等。

這些特徵單獨來看,並不能研判一份郵件就是垃圾郵件,但給予足夠的標記資料,演算法就能開始區別垃圾郵件與非垃圾郵件——至少,在濫發垃圾郵件者做出進一步調整之前,這演算法具有此過濾成效。

手寫數字辨識是一個眾所周知的問題,美國國家標準與技術研究院(National Institute of Standards and Technology,NIST)提供一公開測試組,有 60,000 個訓練圖像集和 10,000 個測試圖像集,<圖表>是其中一個小樣本。機器學習系統對此資料的辨識成效很好,在公開競賽中,錯誤率低於 0.25%,亦即平均 400 個字符中只有一個錯誤。

機器學習演算法可能因種種因素而失敗,例如,「過度擬合」(over-fitting),演算法對其訓練資料的表現很好,但對新資料的表現遠遠較差。或者,我們可能沒有足夠的訓練資料,或是我們提供了錯誤的特徵集,或者,演算法產生的結果可能確證了訓練集內含偏誤。

這在刑事司法應用系統(例如判刑或預測再犯)中是特別敏感的問題,但在使用演算法來對人們做出研判的任何情況,也會造成問題,例如信用評等、房貸申請、履歷表篩選。

垃圾郵件偵測及數位辨識系統是分類型演算法(classification algorithms)的例子:對資料項做出正確分類。

預測型演算法(prediction algorithms)則是試圖預測一數值,例如房子價格、運動比賽得分、股市趨勢。

舉例而言,我們可能試圖根據位置、年齡、客廳面積與房間數等主要特徵來預測房子價格,更複雜的模型——例如 Zillow 使用的模型——會加入其他特徵,例如相似房屋之前的售價、社區特色、房地產稅、當地學校素質。

非監督式學習——讓電腦自己找出特徵與規則

不同於監視式學習,非監督式學習(unsupervised learning)使用未加入標記的訓練資料,亦即沒有對資料加上任何標記或標籤。非監督式學習演算法試圖在資料中找出型態或結構,根據資料項的特徵,把它們分組。有一種盛行的演算法名為「k 群集分析」(k-means clustering),演算法盡力把資料分成 k 群,讓每一群中的資料項相似性最大化,並且各群之間的相似性最小化。

舉例而言,為研判文件的作者,我們可能假設有兩名作者,我們選擇可能的關聯性特徵,例如句子的長度、詞彙量、標點符號風格等等,然後讓分群演算法(clustering algorithm)盡它所能地把文件區分成兩群。

非監督式學習也適用於在一群資料項中辨識離群項(outliers),若大多數資料項以某種明顯方式群集,但有一些資料項不能如此群集,可能代表必須進一步檢視這些資料項。

舉例而言,設若<圖表>中的人工資料代表信用卡使用情形的某個層面,多數資料點分別群集於兩大群之一,但有一些資料點無法群集於這兩群中的任何一群,或許,這些資料點沒什麼問題——群集分析不需要做到完美,但它們也可能是詐欺或錯誤的情況。

群集分析以辨識異常值。圖/普林斯頓最熱門的電腦通識課

非監督式學習的優點是不需要做可能滿花錢的訓練資料標記工作,但它不能應用於所有情況。使用非監督式學習,必須思考出與各群集相關的一些可用的特徵,當然,對於可能有多少個分群,也需有一個起碼的概念。

我曾經做過一個實驗,使用一個標準的 k 群集分析演算法來把約 5,000 個臉孔影像區分為兩群,我天真地期望這演算法或許能區分出性別。結果是,它的正確率約 90%,我不知道它是根據什麼來下結論的,我也無法從那些錯誤的情況中看出什麼明顯型態。

——摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

商業周刊
12 篇文章 ・ 3 位粉絲

2

4
0

文字

分享

2
4
0
AI 戰警出動——抓出惡意程式,資訊安全有保障!
科技大觀園_96
・2022/02/27 ・3145字 ・閱讀時間約 6 分鐘

數位戰警網路掃黑。圖/fatcat11 繪

網路數位世界黑影幢幢,美國有線電視新聞網 CNN 曾報導,全世界每天產生超過 100 萬個惡意程式;臺灣軟體聯盟也曾發布調查報告,全球企業因惡意程式攻擊,每年損失超過 10 兆新臺幣,相當於我國 109 年度政府總預算的 5 倍。駭客散播惡意程式橫行網路,不僅企業深受其害,各國政府也防不勝防。

行政院資通安全處偵測統計,我國各政府單位每月被攻擊次數高達 2,000 萬到 4,000 萬次。近期最受矚目的就是,總統府在蔡英文總統 520 連任就職前夕,驚傳遭駭客入侵電腦竊取資料;接著 5 月底美國資安公司「Cyble Inc」揭露駭客在暗網[1]兜售「臺灣全國戶政登記資料庫」超過 2,000 萬筆臺灣民眾個資,接連引發輿論譁然。

面對駭客無窮盡的闇黑攻擊,臺灣大學電機工程學系教授林宗男從 2018 年開始,帶領團隊利用資料科學處理分析,建立網路異常與攻擊預測模式,發展「AI Cyber Security」(人工智慧網路安全)系統,從偵測藏身於 Windows 與 Android 系統的惡意程式、暗網流量分類與網路惡意流量偵測等「四管齊下」,全面展開網路掃黑行動,防堵駭客散播惡意程式搞破壞。 

國立臺灣大學電機工程學系教授林宗男。圖/李宗祐攝

抓出惡意程式的 AI 網路安全系統

這項研究計畫今年邁進第 3 年,「我們做出來的技術,都是可以馬上用的真槍實彈!」林宗男透露,相關前瞻技術初步成果陸續發表後,「國家安全局就找上門,要跟我們技術合作。」隨著世界各國競相重點投資,引領 AI 成為國力象徵,研究團隊除了以建置臺灣國家級網路防禦系統為目標,更希望這套系統能夠推廣成為捍衛各國企業或組織的數位戰警。

就如同 CNN 報導,全世界每天產生超過 100 萬個惡意程式,網路數位世界危機四伏;但值得注意的是,這個數據還是 2015 年的統計,現在恐怕有增無減。研究團隊以先發制人策略,杜絕惡意程式伸出魔爪,利用 CNN(Convolutional Neural Networks,卷積神經網路)模型[2]訓練 AI ,偵測是否有惡意程式潛伏在使用者電腦 Windows 或手機 Android 系統蠢蠢欲動。

Windows 與 Android 的惡意程式偵測

「我們的目標是在他還沒有執行之前,阻止惡意程式啟動。」面對五花八門的應用程式,研究團隊指出,使用者在下載執行前,「把程式的 exe 執行檔轉換成圖片檔,放進我們建立的模型,AI 就會告訴你這個程式是惡意程式的機率是多少。如果很高,就不要執行,避免系統被惡意程式感染。」林宗男強調,能夠辨認程式碼到底是惡意或者是正常,是確保網路安全最重要的基本功。

偵測惡意程式效率明顯提升 7.2%。把執行檔圖形化的方法更為安全,只看圖的結構,不會啟動執行檔,可以避免在偵測過程被感染。圖/林宗男實驗室提供

經過測試驗證,Windows 偵惡系統成功率與準確率達 88.9%,超越全球圖形處理器領導廠商 NVIDIA 發表的 AI 偵惡技術 7.2%。林宗男指出,很多軟體公司都競相投入研究,就過去已公開發表的研究論文,NVIDIA 抓駭效率暫時領先群雄;臺大團隊與擁有雄厚資源的 NVIDIA 研究團隊相較,就像是小蝦米與大鯨魚,能夠超越他們很不容易。「但這僅是初步研究結果,我們還在持續精進中。」 

相對於 Windows 偵惡系統獨立開發,Android 偵惡系統則是與日本 NICT(情報通信研究機構)合作研發,利用臺大團隊提出的新演算法,把 NICT 研發的 AI 偵惡系統抓駭效率從 92% 提升到 96.2%,青出於藍而勝於藍,讓日本團隊印象深刻。 

Android 惡意程式偵測:研究團隊透過取出已知惡意程式的可執行檔特徵,並利用反混淆技術加入新的特徵,再透過 AI 演算法處理特徵,判斷是否為惡意 Android 程式。圖/林宗男實驗室提供

透過機器學習,分析暗網流量

雖然無法做到百分之百滴水不漏,但為了知已知彼,研究團隊更直搗黃龍,「潛水」暗網蒐集情資,分析駭客行為特徵。林宗男表示,駭客為了躲避追蹤,都在暗網活動,因為透過 TOR 瀏覽器加密,網管人員無法辨識使用者到底是在上網聊天、傳資料、發送 Email,還是看 YouTube 聽音樂或追劇等。對追蹤技術研究者而言,到暗網觀察駭客「水面下」的活動,是很重要的情資來源。 

研究團隊透過 AI 研究分析已知惡意程式的網路行為特徵,再側錄蒐集暗網不同使用者上傳流量與行為模式,找出「壞人經常走的路徑」,把暗網流量做善惡分類,研判哪些是正常上網行為,哪些是惡意程式發動攻擊。林宗男舉例,就像防疫期間每個人都戴著口罩,但年紀大的和年紀輕的行為就是不一樣,「我們就是利用 AI 從行為特徵分辨使用者上網行為是否正常。」 

研究成果經與美國 IBM 和中華電信合作驗證測試,辨識率高達 99.6%,遠超過加拿大研究團隊的 81.6%。對 ISP(網路服務供應商)而言,若能明確辨識暗網流量分類,就不必把看影片或聽音樂等受到惡意攻擊可能性極低的影音串流,全部導入 IDS(入侵檢測系統)資安偵測,大幅節省資源。

暗網流量類型分類:臺大研究團隊利用 AI 演算法分析網路流量特徵,把經過匿名加密的流量分門別類,協助網管人員有效而安全的管理網路。圖/林宗男實驗室提供

惡意流量偵測,鞏固第 2 道防線

研究團隊也利用最近 3 年眾所周知的 10 種惡意程式,包括 2017 年肆虐全球的勒索軟體 WannaCry(想哭)進行惡意流量偵測「實兵演練」。畢竟惡意程式偵測不可能做到百分之百,漏網之魚在所難免。根據資安調查顯示,惡意程式滲透入侵電腦系統之後,平均長達 56 天才會被發現。 

「惡意流量偵測其實是第 2 道防線!發生惡意流量代表電腦已經中毒了,我們的目標是在最短時間偵測出惡意流量。」林宗男透露,跨國網路科技公司 CISCO 現有商用偵測系統精確度已達 97.7%,「我們做得再好,也僅能微幅提升到 98.2%。」研究團隊再發揮 3 個臭皮匠勝過 1 個諸葛亮的精神,把 2 套系統截長補短,將精確度再向上提升 0.3%,堅持沒有最好、只有更好的信念,鍥而不捨地挑戰不可能的任務。

惡意流量偵測:研究團隊透過 AI 研究分析已知惡意程式的網路行為特徵,加速偵測發現網路異常流量,並揪出潛伏在網海裡面興風作浪的惡意程式。圖/林宗男實驗室提供

eID 的潛在風險

然而,林宗男也深知,資安不可能做到百分之百的絕對安全。當內政部決定在明年全面換發 new eID 數位身分證,建置 T-Road(政府資料傳輸平臺),打造跨政府機關資料通道網路,推動「一卡多用」串聯戶籍資料、健保資料庫、汽機車駕照交通監理資料、國民年金與勞保勞退年金等,同時政府也將讓 new eID 擁有線上交易完整性與不可否認性,做為電子商務交易憑證。林宗男對此呼籲政府應正視 new eID 缺乏法源依據的問題,更要從資訊安全的角度,重新審慎評估全面換發數位身分證的必要性。 

「透過 new eID 建置 T-Road 聽起來好像很方便、很進步,但對駭客而言,要偷取全國 2,300 萬人的資料,也非常方便。一旦出現資安破口,整個系統就會因單點失效而全面瓦解。」林宗男說,「new eID 把國人從出生到死亡所有資料全部放在 T-Road,我們都知道網路沒有絕對安全,還要把所有的東西全部放在一個籃子裡面嗎?」政府應該要有分散風險的危機意識,數位身分證絕對不能「一卡多用」。  

註解

  1. 利用 TOR(The Onion Router 洋蔥路由器)瀏覽器遮蔽使用者真實位址,避開網管系統追蹤的匿名網路。
  2. 參考人類大腦視覺組織建立的深度學習模型。
所有討論 2
科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。