0

4
0

文字

分享

0
4
0

歲歲有今朝但年年不一樣?狡猾的流感病毒與它的疫苗——台灣疫苗推動協會榮譽理事長 李秉穎醫師 專訪

科技大觀園_96
・2021/09/02 ・5589字 ・閱讀時間約 11 分鐘

你每年都有打流感疫苗嗎?幹嘛不作個「長效型」的流感疫苗呢?
各種流感病毒的困惑,就讓台大醫院小兒科醫師、暨台灣疫苗推動協會榮譽理事長 李秉穎醫師,來幫大家上一門「狡猾的流感病毒與它的疫苗」吧

李秉穎醫師。圖/李秉穎醫師提供

流感病毒感染細胞的關鍵蛋白-血凝素/HA

流感病毒長的像顆圓圓的球型水雷,而球體上的引信就是血凝素(hemagglutinin, HA)和神經氨酸酶(neuraminidase, NA)這兩種表面抗原;這兩個表面蛋白,可刺激人體白血球產生可以對付流感病毒抗體,換言之,它們是疫苗的最重要素材 。而流感病毒尚有其他蛋白質,如:M2離子通道蛋白等,可協助病毒釋出RNA等功能。

李秉穎醫師表示,在疫苗設計裡,科學家最關注血凝素/HA,因為它跟細胞表面的唾液酸受器(sialic acid receptors)結合,進而誘使細胞吞下病毒、感染細胞。換言之,流感病毒的血凝素/HA,如同新冠病毒/SARS-CoV-2的棘蛋白(spike protein),是感染細胞的鑰匙、同時也是製作疫苗的最佳素材。

因此,如果體內有充足的抗體可以咬住血凝素,病毒就無法接觸唾液酸受器,也就無法侵入細胞(此類能阻止病毒進入細胞的抗體,被稱為中和抗體)。所以流感疫苗所含的抗原,都至少有血凝素,試圖刺激白血球產生中和抗體 ;而在實驗室裡,預估每年新的季節性流感疫苗效力的方式,也用中和抗體效價進行評估。

為何每年都要打流感疫苗?

「主要原因是『流感病毒非常容易突變』,而且更麻煩的是,一旦變異、突破免疫系統後,『在脆弱族群裡容易引起重症』。」 李秉穎醫師這麼說道。

流感病毒是RNA病毒,生存策略是「不限制變異,盡可能產生基因多樣的子代」。所以它缺乏校正機制,突變的速度遠比其他病毒(如:水痘病毒)更加快速 。

流感病毒在複製時,常出現微小的錯誤,有時會導致蛋白質的胺基酸產生改變,被稱為「抗原微變(antigenic drift)」。若變化發生在抗體所辨識的關鍵部位,就可能影響抗體辨認血凝素/HA,使疫苗誘發的保護力降低。

而有別於上述單點胺基酸的突變,另一種變異是巨大、劇烈地改變,被稱為「抗原移型(antigenic shift)」-不同流感病毒株、互換彼此 8 段 RNA 中的任意數段 RNA,產生巨大改變的新病毒、甚至獲得跨物種傳染的能力。如:2009年於墨西哥暴發的豬流感大流行,就是人流感和禽流感在同一個細胞裡發生了基因互換,進而產生了全新、極危險的流感病毒。

抗原微變(antigenic drift)和抗原移型(antigenic shift)的示意圖。資訊來源:Journal of Biology

流感病毒的高突變速度,對人類有很大的威脅,不僅是非結構性病毒蛋白質的突變,可能會改變病毒對細胞的毒性,可能引起更多細胞凋亡、更劇烈的體內發炎等,對脆弱族群的殺傷性更增。而突變位置若在血凝素/HA等表面抗原,將使前一年的疫苗誘發的抗體難以辨認、保護力降低。

李醫師也提醒,像流感病毒的這種特性,對年長者等族群的威脅甚大。疫苗在銀髮族誘發的抗體濃度、效力本來就比青壯年低,而血清抗體隨時間逐步衰退的情況下,流感對年長者的威脅更劇。一篇來自《傳染性疾病雜誌/The Journal of Infectious Diseases》的回顧性研究發現,大於60歲以上的族群,流感疫苗誘發的抗體保護力,約僅維持四至五個月。此時若病毒透過突變,獲得穿透抗體保護網的能力,就更可能侵犯這些脆弱族群(所以高風險族群,記得每年都要打流感疫苗喔)。

流感病毒的狡獪之處

而除了病毒的高突變速度外,李秉穎醫師還提出一種假說,來解釋「流感疫苗的保護力,似乎比其他疾病的疫苗短?」和「1976年流感疫苗疑似引發多發性神經炎(GBS, Guillain-Barre syndrome)」

李醫師說:「對人體而言,流感病毒是種『想揍它,但又不敢出全力』的奇特敵人。」

人體有種保護機制,稱為免疫耐受性(immune tolerance),指病原雖然存在於人體,但某些機制使身體不發揮足夠的免疫力來攻擊病原。這類機制在正常情況下,可避免母體攻擊胎兒、降低自體免疫疾病發生 。

但部分病毒似乎能借道此機制,躲避白血球的攻擊,流感病毒可能是其中的佼佼者。目前推論,流感病毒透過分子類似(molecular mimicry),模仿人體組織。流感病毒的蛋白質,和人體神經組織的蛋白質-神經節苷脂 (ganglioside),其立體結構近似。換言之,雖然病毒蛋白質和神經節苷脂,來自不同基因,但部分的立體結構類似,因此在病毒入侵、或接種疫苗後,若產生的抗體,辨認這兩種蛋白質的共同類似結構,就可能出現自體免疫疾病。

所以對人體而言,「想揍流感病毒,但又不敢出全力」,因此疫苗產生的抗體效力衰退速度快。但「想揍病毒,但出了全力」時,其抗體也會攻擊神經節苷脂,此時就會出現免疫失調、多發性神經炎,因此可以看到每年流感季時,罹患多發性神經炎的人數可能會變多,這同時也可能是1976年x, 流感疫苗有多發性神經炎副作用的原因 [9](註:目前僅有1976年豬流感疫苗在動物實驗、流行病學上有證據顯示疫苗會誘導多發性神經炎,但不可擴大推論所有的流感疫苗都會誘導多發性神經炎)。

更精細說明,免疫系統為了避免錯誤地攻擊自我組織,本身就有「敵我辨識系統」,但流感病毒的分子,和人體正常組織的分子過於類似,反而鑽了系統的漏洞,免疫系統在自我克制的情況下,無法發揮全力。所以流感病毒對人體來說,是種很特別、難以對付的病毒。

WHO怎麼知道那些病毒株會流行?

各國的科學家會從流感病人收集檢體,透過解析基因序列、和血球凝集抑制試驗(HI, The Hemagglutinin Inhibition Assay)結果,作為推薦未來一季流感疫苗的依據。

而世界衛生組織(WHO, World Health Organization)會和重要的國家級衛生單位合作,如:美國疾病控制與預防中心(US CDC, Centers for Disease Control and Prevention)、澳洲維多利亞傳染疾病實驗室(Victorian Infectious Diseases Reference Laboratory)等,透過她們的資訊,預測秋冬的流行病毒株。因為疫苗的製程至少需6個月,所以世界衛生組織在每年2月召開會議,推薦北半球的疫苗抗原(預測年底北半球流行株);而9月的會議,推薦南半球的疫苗抗原(預測隔年年中南半球流行株)。

透過收集眾多病人,以分析、推測半年後秋冬流行的流感作業示意圖。資料來源:US CDC

而血球凝集抑制試驗,主要目的是測試前文所述的「中和抗體」。流感病毒表面的血凝素/HA,會黏住紅血球們,將血球們凝集在一起。若抗體能有效辨認病毒的血凝素、阻止其作用,就能抑制凝血作用,證明該濃度下,疫苗誘發的抗體能中和病毒、避免感染 。

血球凝集抑制試驗結果說明。A列為控制組,僅有紅血球,結果是血球沉澱於孔底。B列為摻入病毒,且無抗體或抗體不足以中和病毒,紅血球因病毒表面的血凝素/HA而凝集,結果是血球不沉澱,孔內液體為紅色。C列為抗體足以中和病毒,阻止凝血反應,血球將沉澱於孔底。資料來源: US CDC

如前文所述,透過收集各地病人檢體,並排出候選病毒株,將和去年流感疫苗的病毒株進行比較。研究者用接種過疫苗的動物(如:雪貂)血清做實驗,觀察中和抗體對抗候選病毒株,其中和效價是否大幅降低,若降低4倍以上,就會被定義為該候選病毒株,和去年流行的病毒已不類似;換言之,過去使用的疫苗可能無法保護該候選病毒的感染 ,因此會被認為「需被關注的病毒株」,而科學家再進一步檢視候選病毒流行範圍等資訊,推測是否將成為「優勢流行」病毒株,綜合判斷下,決定是否推薦給藥廠。

世界衛生組織透過各種數據,預測秋冬來臨時,那些病毒株最可能流行,或最需疫苗防治的病毒株。儘管有時會失準,因為2月時的資訊,無法完全反應病毒在未來的演化,但這種推測,仍是絕大多數藥廠製備疫苗的重要依據。

為什麼不選擇不易突變的蛋白質作為抗原呢?

如前文所述,現行流感疫苗誘發的抗體,都是辨認血凝素的特定部位HA淺藍色部件,通常被稱為血凝素「頭部」)。然而,由於病毒的高突變速度,且血凝素並非病毒複製、生存過程中,極度必須的蛋白質,所以有較高的變異容忍度,所以病毒可以產出大量、血凝素頭部略有差異的多樣子代病毒。也因此疫苗帶來的保護力,隔年效果就不盡理想。

有鑑於此,部分團隊想發展長效型疫苗,例如:抗原選用血凝素/HA、但不和受器結合的部位。選用該處作為抗原,有理論之優勢。該處靠近病毒核心,不易出現突變(因為若產生突變,可能對病毒結構產生致命性的破壞,故在演化上,越靠近病毒核心的部位,突變的可能性越低)。理論上,若疫苗誘發的抗體,是針對病毒不易突變的蛋白質(如:血凝素「莖部」),就能做出長效、甚至廣譜型的流感疫苗。

但此概念有個致命的問題。流感疫苗的目標是「避免感染」,而病毒入侵細胞的鑰匙就是血凝素「頭部」。選用其他部位當作疫苗抗原,誘發的抗體將無法直接卡住血凝素和唾液酸受器,等同打蛇不打七吋,阻止感染、中和病毒的效果有先天的缺陷。研究團隊試圖透過其他方式彌補此缺陷,如:添加佐劑等提高抗體濃度,如同幫疫苗打超級士兵血清、期待變成美國隊長,但目前尚未看到有效的研究成果,都仍停留在實驗室階段。

聽說有種新製程的流感疫苗,保護力比較好,真的嗎?

美國在研究歷年的流感疫苗時,發現有時疫苗的病毒株,雖然和真實流行的病毒株相符,但效果不如預期。進一步研究發現,疫苗內的抗原,其胺基酸序列和原始設計稍有差異。深入研究後,科學家觀察到,用雞胚培養的流感病毒,在培養過程中會自然突變。

人類使用雞蛋培養病毒,作為疫苗抗原的技術,已有七十多年的歷史。科學家使用特製的疫苗用無菌蛋,將候選病毒注入已受精的雞蛋,培養數天、讓病毒大量繁殖後,再萃取病毒後製成疫苗。然而,本質上習慣人類環境的流感病毒,在雞胚裡生長時,有時會突變、適應鳥類細胞環境(egg-adaptive mutations),因此最終收集的疫苗抗原和原始預期有差距。目前已知A型流感的H3N2病毒株,在雞胚的生長效率較差,也較容易發生雞蛋適應性突變。

因此科學家發展出另一種技術,改採用哺乳類細胞培養病毒。由於病毒生活的細胞和人體類似,病毒不用特別突變去適應生長環境,所以最終製出的抗原將和預期相符,理論上疫苗的保護效果較雞胚培養的疫苗稍高;但需注意,此為新技術,目前的數據尚不夠充分。

除了理論的優點外,細胞培養疫苗也有製程上的優勢。雞胚培養需要特殊的疫苗蛋,製程耗時較長。若改採細胞培養生產,將無須選購、等待大量的疫苗蛋,可擁有更快的速度和彈性。由於上述的優勢,未來流感疫苗可能會慢慢轉向細胞培養技術。

為什麼季節性流感疫苗,每年都更換抗原,但似乎不需要做三期試驗就可上市?

主要是沒有辦法做,來不及(啊2月才知道病毒株,9月流感季就開始了,怎麼作三期試驗?)。因為現實面有困難,所以各國的共識是用血球凝集抑制試驗/HI,測試中和抗體效力,作為驗證疫苗效力的標準。試驗結果也許和實際保護力略有落差,但現實上流感病毒的突變速度過快,藥廠製造時間僅有六個月,因此,這是必須的取捨。

以我國疫苗廠-國光生技製作流感疫苗為例,藥廠在第一次申請流感疫苗藥證之前,徵招數百人進行實驗,測試中和抗體效力等數據,確認疫苗各項條件皆符合預期。食品藥物管理署確認各數據都合於規範,就會發給當年的流感疫苗藥證。而之後,每年重新申請季節性流感疫苗藥證時,由於僅調整抗原內容,未改變製程,政府認為效力和安全性不會因此大幅度改變,所以無需再進行人體試驗。這種審核流程,是因為流感病毒變異太快,人類必須在理想和現實中進行取捨。

雖然無法在上市前、透過人體試驗了解疫苗效力,但政府會透過上市後的監督和追蹤,檢視流感疫苗的效果。以美國為例,該國曾回溯分析後發現,鼻噴劑減毒流感疫苗在2013-14和2015-16的流感季,保護力表現不佳,因此停止核發2016-17和2017-16的藥證,直到藥廠更換病毒株、重新證明保護力不劣於其他疫苗,美國才重新核發藥證。

參考文獻


數感宇宙探索課程,現正募資中!

文章難易度
科技大觀園_96
82 篇文章 ・ 1089 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

4
0

文字

分享

2
4
0

「你不要過來啊!」蜘蛛為了在交配中保命,竟然把自己給射出去了!

Peggy Sha
・2022/05/18 ・1686字 ・閱讀時間約 3 分鐘

自然界中,充滿了不少為了交配而「慷慨赴義」的勇者,像是:螳螂、蜘蛛等等,在激戰中或激戰後,雄性會變成配偶的盤中飧,如此一來,不僅可以延長交配時間、增加受精機率,還能為雌性提供養分,讓後代更有機會健康快樂地成長!(讓我們感謝飛天小爸爸的努力!)

「性食同類」不僅可以延長交配時間、增加受精機率,還能為雌性提供養分,讓後代更有機會健康快樂地成長!圖/Pixabay

這種現象呢,被稱之為「性食同類」(sexual cannibalism),通常是雌性吃掉雄性的比例稍微高一些。

但正如俗話所說,「生命會自己找到出口」,竟然有雄性蜘蛛靠著把自己「射」出去來保下一命!今天,就要來為你講述,隆背菲蛛(Philoponella prominens)的噴射故事。

交配到一半就彈出去了?超離奇高速彈射之謎!

這次的主角隆背菲蛛呢,是一種原產於日本、韓國等地的社會性動物,過去驚人的成就包括:能夠一次聚集 300 多隻同伴,共同編織出一片大網。

至於牠們超強的彈射能力又是如何被發現的?原先,來自湖北大學的張士昶副教授與團隊正在研究隆背菲蛛的性行為,卻忽然發現了一個超離奇現象:完成交配之後,雄蛛居然會猛然彈開,「biu」地一下就飛得老遠!

這驚人的過程可說是快到不可思議,最高紀錄達到一秒 88.2 公分,別說是肉眼,就連普通相機都沒辦法正確紀錄下細節。

這個現象立刻引發了研究團隊的好奇心,那麼接下來該怎麼辦呢?當然是:交配大戰看起來!

射,還是不射?這是個攸關性命的問題!

為了進行研究,團隊總共觀察了 155 次交配行為,並在其中 152 次中觀察到了這種超高速的彈射情形。你可能會很好奇,那剩下的 3 次呢?嗯……那 3 隻隆背菲蛛沒有成功彈射出去,交配後就成了配偶的大餐了。

什麼?沒彈掉就會被吃掉?這究竟是巧合還是命運的安排?

研究人員決定出手人為干預一下,他們選了 30 隻隆背菲蛛,然後想辦法阻止牠們彈射,結果發現:「彈射=保命」,要是你射不出去,那你就逃不過配偶的大口,注定要變成人家的晚餐。

要是隆背菲蛛彈射失敗,那就逃不過配偶的大口,注定要變成人家的營養來源。圖/Pixabay

相反地,如果成功彈出去了,那麼,你不但可以保命,也多了再次交配的機會。嘿,沒錯,牠們彈出去後還會再爬回來交配,再彈、再爬、再交配,就如此反反覆覆。(當然啦,有時也會在過程中不小心弄掉一些身體部位,比如一兩支步足。)

想要成功噴射,你需要一對強壯的步足!

至於為何隆背菲蛛能變成這樣的飛天小蜘蛛呢?秘密就藏在牠們的步足中。研究團隊發現,雄蛛們會將第一對步足抵在雌蛛身上,一旦交配完成,就用力蹬腳彈射出去。

根據實驗,科學家們發現這對步足可說是噴射與交配關鍵,少了一支都不行,只要沒有這對秘密武器,雄蛛只會停留在求偶階段,但不會真的跟雌蛛交配。但如果掉的是其他幾支腳,那可完全不會影響交配過程,還是能順利完成生育大計。

而這對秘密武器最強大的地方,其實是來自液壓;只要蜘蛛擠壓胸部的肌肉,便可以將其中的體液注入特定關節(tibia–metatarsus joint),透過液壓來伸直步足、產生彈力。

沒想到吧?為了在交配中保命,隆背菲蛛還得運用到流體力學,是不是很有趣呢?

參考資料:

Male spiders avoid sexual cannibalism with a catapult mechanism: Current Biology
These male spiders catapult away to avoid being cannibalized after sex
Watch These Male Spiders Jump Like Hell to Avoid Being Eaten After Sex
This Male Spider Catapults Itself Into the Air to Avoid Sexual Cannibalism | Science| Smithsonian Magazine
台灣物種名錄


數感宇宙探索課程,現正募資中!

所有討論 2
Peggy Sha
62 篇文章 ・ 379 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。