Loading [MathJax]/extensions/tex2jax.js

1

5
0

文字

分享

1
5
0

來回票價5500萬美元!?史上最昂貴旅遊團——「太空旅遊」的過去與未來

黃 正中_96
・2021/08/29 ・4536字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

太空旅遊的歷史,始自1984年

太空旅遊最近熱門起來,依照現有技術發展,有幾種不同類型太空旅遊常被人們提起,包括次軌道1、太空軌道和月球太空旅遊。

各國太空計畫通常由政府編列預算,因此能夠獲選為太空人都是太空總署雇員或軍方身分,沒有民間或是個人能夠參加。這種情況在 1984 年被打破了,第一位民間太空人查理.沃克(Charles D. Walker)2,他服務於美國麥克唐納道格拉斯公司(McDonnell Douglas)公司,帶著所研發的「太空中蛋白質晶體生長」酬載,搭乘太空梭進行太空科學實驗,當時麥道公司花費了約今天 9 萬美金的費用給美國太空總署。

第一位民間太空人查理.沃克(Charles D. Walker)在 NASA 的肖像。圖/維基百科

在 1985 年美國太空總署提出「太空飛行參與者計畫」邀請民眾參加,海選出高中老師 Christa McAuliffe 參加太空飛行;她計畫在太空中進行基礎科學實驗並教授兩堂課,不幸在挑戰者號太空梭爆炸災難中喪生,停止了民間參加太空計畫。

美國太空梭任務停止之後,1998 年國際太空站的第一個組件曙光號進入太空軌道,隨後團結號太空艙升空與曙光號連接,2000 年星辰號太空艙加入國際太空站;2000 年 11 月太空人第一次登上國際太空站。

-----廣告,請繼續往下閱讀-----

在 2001 年美國政府同意民間發展「太空旅遊」,美國的太空探險公司(Space Adventures)與俄羅斯航天公司(Roscosmos)和科羅廖夫能源火箭公司(RSC Energia)合作,推出國際太空站的太空旅遊。前後有七名太空遊客乘坐俄羅斯聯盟號所搭載的太空船,進行了八次前往國際太空站太空飛行,每次旅行的公開價格在美金 2,000 到 2,500 萬元之間。但是後來美國太空總署宣布,從 2020 年開始規劃只能使用 SpaceX 公司的龍(Dragon)太空船和波音公司的星際客機(Starliner)太空船提供民間太空人飛行前往國際太空站,往返的費用估計為美金 5,500 萬美元。

什麼是次軌道太空旅遊?

太空旅遊花費 5 千萬美金,將民眾載到國際太空站費用還是太高,次軌道太空旅遊的優點,由民眾在太空觀察地球,體驗無重力環境,從地面發射太空飛行器直接進入軌道,不拋棄燃料箱、發動機或其他主要部件,屬於可重複使用發射系統的一種,費用可以大幅降低,缺點是旅遊行程時間太短。

經過數年的準備,維珍銀河(Virgin Galactic)以及藍色起源(Blue Origin)公司分別在今年 7 月,完成了商用次軌道太空旅遊示範。

(左) 維珍銀河團結號。圖/Virgin Galactic;(右) 藍色起源新謝帕德號。圖/Blue Origin

太空旅遊有多貴?真的不如不要問……

維珍銀河公開太空邊緣機票價格為 25 萬美元以及一件太空衣贈品,聲稱已經有 600 位民眾預約。Blue Origin 第一次飛行提出可以和亞馬遜創辦人傑夫.貝佐斯(Jeff Bezos)共乘火箭,因為名額有限採取競標機票,最後價格炒高到 2 千 8 百萬美元,但是出發前最高得標者以行程衝突理由退出,由競標次高者接替,價格並未公布。

-----廣告,請繼續往下閱讀-----

除此之外,SpaceX 公司亦積極規劃太空旅遊,旗下的龍太空船,每趟可以搭乘 7 名太空人,每一次飛行到國際太空站的價格為 5 千 5 百萬美金。美國太空總署購買這些航班的座位,但不一定每次發射時都坐滿所有座位,因此允許 SpaceX 公司將這些座位出售給遊客,以減輕太空計畫費用。

維珍銀河的發射方式

維珍銀河的次軌道太空旅遊,採取空中發射(Air-Launch)的方式,不需要大量燃料即可到達太空;維珍銀河太空旅遊由一架名為白騎士二號的飛機從跑道起飛,飛行到 25 公里高度,在空中太空艙與白騎士二號飛機分離,隨後啟動太空船火箭引擎,以 3 馬赫的速度飛向太空。

2008 年維珍銀河公司完成首次次軌道太空飛行測試,但是在 2014 年 VSS Enterprise 太空船的第四次火箭動力試飛,發生太空船解體災難,調查結果因為人員訓練不足,過早地解鎖可移動尾部空氣製動系統。2016 年推出新設計的 VSS Unity 太空船, 經過六次動力試飛,2019 年首次搭載三名飛行員飛行高度達到 89 公里,根據美國對太空邊界的定義首次到達外層太空。

2021 年 7 月,維珍銀河公司由創始人和其他三名員工為乘客,乘坐太空飛機抵達 86公里高的次軌道太空,完成人類首次太空旅遊示範;規劃再完成另外兩次試飛後,於 2022 年提供定期服務付費客運太空旅行航班。

-----廣告,請繼續往下閱讀-----
Virgin Galactic’s First Fully Crewed Spaceflight #Unity22。影/
Virgin Galactic

藍色起源3的發射方式

藍色起源公司在 2012 年之前開始開發軌道載人太空船系統,利用可重複使用的運載火箭進入太空,聲稱成本更低且更可靠。用於進入次軌道和軌道太空的火箭動力垂直起降(VTVL)的 New Shepard 飛行器,多次試飛中,該無人駕駛飛行器都達到了超過 100 公里的卡門線測試高度,並達到了超過 3 馬赫(3,675 公里/小時)的最高速度,太空艙及其火箭 助推器成功著陸。

藍色起源太空船引擎和與聯合發射聯盟(United Launch Alliance, ULA)公司合作開發,名為 Blue Origin 4(BE-4)太空船引擎使用液態氧和甲烷(LOX / Methane)燃料,因此藍色起源公司聲稱自家開發的行程是「最環保的太空旅行」。

Replay – New Shepard First Human Flight。影/Blue Origin

駛向國際太空站的民間太空船有哪些?

美國太空總署於 2011 年提出國際太空站的商業機組人員計畫(Commercial Crew Program),由民間競標獎金為 42 億美元。最後選出 SpaceX 公司的龍太空船(Dragon)以及波音公司的星際客機(Starliner)太空船參加計畫。

SpaceX 公司已經完成 2 次運送太空人抵達國際太空站,至於波音公司規劃在8月發射的星際客機,延期發射主要的原因是在發射台進行發射前檢測時,才發現推進系統閥門有問題必須修復,導致星際客機升空將會大幅延遲幾個月。

-----廣告,請繼續往下閱讀-----

SpaceX 公司——龍太空船

SpaceX 公司的龍二號太空船4設計能夠運送 7 名太空人以及貨運補給,到今年 7 月為止的的總飛行次數達 27 次,其中有 2 次測試飛行,有 25 次底達國際太空站,運送了 6 位太空人以及補給貨物。目前 SpaceX 正在規劃太空旅遊,將很快進入旅遊市場,目前 SpaceX 也積極規劃中。

龍二號太空船(右圖)與其技術參數(左表)。圖/SpaceX

龍二號太空船配備了 16 個德拉科(Draco)推進器,用於在任務期間為太空船定位,包括遠地點 / 近地點機動、軌道調整和姿態控制。每個德拉科推進器都能夠在太空真空中產生 40.8 公斤的推力。

波音公司——星際客機5

波音公司的星際客機(CST-100 Starliner)目前正在準備第一次沒有載人前往國際太空站測試。星際客機最多可容納 7 人,設計目的是能夠在軌道上停留長達 7 個月,並可重複使用多達 10 次任務。2019 年第一次軌道測試,發現軟體錯誤導致姿態控制推進器消耗的燃料比計劃的多,從而無法與國際太空站對接。原本預計 2020 年發射但是,第二次軌道飛行試驗發現軟體問題,改善之後原先預計 8 月會執行沒有載人到太空站測試,但是最近俄羅斯「Nauka科學號」太空艙發生問題,導致星際客機升空延期。

CCST-100 模型與最初挑選的前兩次任務成員合影。從左到右:Sunita Williams,Josh Cassada,Eric Boe,Nicole Mann和Christopher Ferguson。圖/維基百科

太空旅遊恐促進全球暖化6

太空旅遊燃燒推進劑提供了將火箭發射到太空所需的能量,同時也會產生溫室氣體和空氣污染物。

-----廣告,請繼續往下閱讀-----

藍色起源火箭使用液態氫和液態氧推進劑。維珍銀河 VSS Unity 使用 的混合推進劑由固體碳基燃料、羥基封端聚丁二烯(HTPB)和液體氧化劑一氧化二氮組成。SpaceX Falcon 系列可重複使用火箭將使用液態煤油和液態氧將龍太空艙送入軌道。

獵鷹 9 號將 60 顆 Starlink 衛星送入軌道。圖/SpaceX

燃燒 BE-3 推進劑會產生水蒸氣,而 VSS Unity 和 Falcon 燃料的燃燒會產生 CO₂、煙灰和水蒸氣。VSS Unity 使用的氮基氧化劑還會產生氮氧化物,這些化合物會導致靠近地球的空氣污染。

大約三分之二的推進劑尾氣被釋放到平流層(12 公里 – 50 公里)和中間層(50 公里 – 85 公里),在那裡它可以持續至少兩到三年。發射和再入過程中的極高溫度也會將空氣中的穩定氮轉化為活性氮氧化物。

這些氣體和顆粒對大氣有許多負面影響。在平流層,水蒸氣分解形成的氮氧化物和化學物質將臭氧轉化為氧氣,耗盡保護地球生命免受有害紫外線輻射的臭氧層。水蒸氣還會產生平流層雲,為這種反應以比其他方式更快的速度發生提供​​表面。

-----廣告,請繼續往下閱讀-----

太空旅遊蓬勃發展,導致大量排放的二氧化碳和煙灰到大氣中吸收熱量,導致全球變暖。大氣冷卻也可能發生,因為由排放的水蒸氣形成的雲將入射的陽光反射回太空。消耗殆盡的臭氧層也會吸收更少的入射陽光,從而減少平流層的熱量。

英國研究報告6,火箭在同一時期排放的氮氧化物是英國最大的熱電廠的四到十倍 。太空飛行中四名左右遊客的二氧化碳排放量將是長途飛行中每位乘客二氧化碳排放量的 50 到 100 倍。

太空旅遊的下一步,要挑戰太空移民7

2017 年 SpaceX 公司的創辦人伊隆.馬斯克(Elon Musk)在澳洲舉辦的國際太空會議(International Astronautical Congress, IAC),演講「讓生命成為多行星(Making Life Mulitiplanetary)」的太空移民概念,並在 90 分鐘內將其有效載荷運送到地球上的任何地方,擘劃人類的未來太空挑戰。

讓生命成為多行星。影/SpaceX

目前在美國德州的 Boca Chica 火箭發射場組裝星際太空船(Starship)已經到了最後發射前準備階段,太空船高度達 120 公尺,使用液態氧和甲烷作為燃料。這艘太空船可重複使用,能一次將多達 100 人或 100 噸的貨物送入太空。這一次測試將先測試人類第一次在地球上的「異地飛行」,從美國德州發射進入太空,進入太空軌道繞著地球,再返回大氣層降落到美國夏威夷艾島,成為實質上的異地「太空旅遊」,讓我們拭目以待。

-----廣告,請繼續往下閱讀-----

外太空探索與科學創新計畫

外太空的環境充斥著太陽輻射或宇宙高能粒子,當太陽表面劇烈活動時,散發出來的輻射或電漿粒子,會造破壞衛星的功能,甚至有時候會威脅國際太空站的太空人的健康。

我國「第三期太空科技發展長程計畫」於2019年1月15日由行政院核定,「外太空探索與科學創新計畫」是規劃項目之一;目前國家太空中心的外太空探索,正規畫地球以及月球的科學探索議題。

  1. 維基百科,〈Space Tourism
  2. National Space Society ,〈Charles D. Walker Biography
  3. 維基百科,〈United Launch Alliance
  4. SpaceX官網,〈Dragon
  5. 維基百科,〈Boeing Starliner
  6. 2020,Eloise Marais ,〈Space tourism: Rockets emit 100 times more CO2 per passenger than flights
  7. 維基百科,〈SpaceX星艦
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
黃 正中_96
8 篇文章 ・ 7 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃