0

5
0

文字

分享

0
5
0

求生意識堅強!混凝土中的細菌們,有助於監測建築結構安全?

羅夏_96
・2021/08/28 ・3410字 ・閱讀時間約 7 分鐘

我們都知道生命是非常頑強的,在一些極端環境如高熱強酸的火山溫泉、高壓強鹼的深海等,都能找到一些生物定居。不過如果想找極端的生存環境,不必到這麼危險的地方,你我身邊其實隨處都有,那就是「混凝土」之中。混凝土內部的環境對生物來說也是極端苛刻:強鹼、高鹽、乾旱、缺乏食物。而近期發表在 mSystems 上的研究顯示,即便是混凝土之中,也有生命存在[1]

混凝土的組成與缺陷

混凝土是由骨料 (礫石和沙子)、水泥、水和添加物依適當比例配置而成的複合材料。混凝土因有著硬度高、耐高壓、可塑性強、成本低廉、製作簡單、可適用於各種自然環境等特性,成為世界上使用最多最廣的建築材料,幾乎絕大部分的現代土木工程都會用到。

Structure of Concrete
混凝土的構造。圖/Using Concrete

混凝土雖然是優秀的建材,但也並非沒有弱點。鹼-矽反應(alkali–silica reaction, ASR)就是一個會破壞混凝土結構的常見因素。ASR 會讓混凝土產生俗稱「混凝土癌」的狀態。而形成 ASR 的主要原因,就在混凝土中的水泥身上。

https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/ASR_concrete_pillar_National_Gallery_of_Canada_02.jpg/1920px-ASR_concrete_pillar_National_Gallery_of_Canada_02.jpg
因 ASR 所產生的混凝土癌。圖/Wikipedia

混凝土中最常使用的水泥為「波特蘭水泥」,即矽酸鹽水泥。當水泥和水混和後會發生一系列複雜的物理與化學反應,使其凝結與固化。而在這個過程中,會產生大量強鹼物質如氫氧化鈣,這就讓混凝土內部的 pH 值處在 12.5 左右。

Chemical reactions during hydration and carbonation of cement in accelerated CO 2 curing. 
水泥的水化反應。圖/ ScienceDirect

正常的混凝土其內部結構相當緻密,基本沒有水分。但當混凝土受到撞擊、搖晃等外在衝擊而產生裂縫後,水就能滲入其中。而當水進入混凝土後,會使混凝土內部的強鹼和矽酸鹽類產生反應,形成水合矽酸鹽。這些水合矽酸鹽會在混凝土內部產生不均勻的膨脹,而當水合矽酸鹽的數量達到一定後,就會造成混凝土的破裂。

https://ars.els-cdn.com/content/image/1-s2.0-S0950061819318811-ga1_lrg.jpg
ASR 的化學反應示意。圖/ScienceDirect

要避免 ASR 的一個方法,是在混凝土中加入飛灰(fly ash)。飛灰是火力發電廠在燃燒後所產生的廢棄物,其主要成分為 SiO2、AI2O3 和 CaO。飛灰會和水泥中的強鹼進行卜作嵐反應(pozzolanic reaction),該反應是透過 SiO2 和 AI2O3 等物質與強鹼反應形成膠體。因此加入飛灰到混凝土中,不僅能降低 pH 值,產生的膠體也可用來填補孔隙並膠結骨材,以更好的填塞混凝土中的孔隙。

卜作嵐反應的化學式。圖/Wikipedia

混凝土中的細菌種類

研究已知有多種細菌能生長在混凝土的表面,而當混凝土因 ASR 或其他因素產生裂縫後,細菌也能從表面進入到混凝土內部,而這就有可能會對混凝土產生進一步的影響。由於混凝土是世界上最常見的建材,為了確保建築物、橋梁和道路的結構安全,越來越多科學家開始關注生存在此的微生物群,與其可能對混凝土所造成的影響。

過往的研究已證實混凝土內部確實有細菌生長,但這些研究的主要對象是隨著裂縫從表面進入混凝土之中的細菌。而美國德拉瓦大學的研究團隊更進一步,研究「本來」就生活在混凝土內部的細菌[1]

為了進行研究,研究團隊製作了兩種混凝土樣本:一般混凝土加入飛灰的混凝土,並將這兩種樣本放在屋頂上模擬自然風化的環境,然後每六週進行一次取樣分析,以了解混凝土內部的細菌組成。

研究示意圖。圖/參考資料 1

他們最初的設想是,沒有加入飛灰的樣本會因 ASR 產生更多裂縫,這樣混凝土表面的細菌進入到內部的機會就更大,這就會讓兩種混凝土內部的細菌種類會隨著時間推移而有所不同。

Students took DNA samples from concrete cylinders that had been exposed to the elements over a two-year period.
已取樣完的混凝土樣本。圖/ HARD-CORE BACTERIA

在持續兩年的分析和追蹤後,研究團隊發現混凝土內部的細菌組成主要為變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)和放線菌門(Actinobacteria)這三大類。雖然這三大類細菌是主要組成,不過隨著時間推移和季節的改變,混凝土內部的細菌組成也會有所不同。舉例來說,實驗初期的細菌種類明顯較多,但隨著時間的推移,細菌的多樣性會持續下降。不過這種多樣性的下降,會在溫暖多雨的夏季有短暫的反彈,只是一過了夏季,多樣性又會再次降低。

混凝土內部的細菌種類分支圖。圖/參考資料 1

而上述的結果在兩種混凝土的樣本中並沒有明顯的差異。也就是說,不論混凝土的材質是否能抗 ASR,其內部的細菌組成和變化都差不多。

研究團隊認為,這些主要菌種很可能是隨著混凝土的主要原料 – 即骨料水泥進到混凝土內部的,因此牠們才是最能適應混凝土內強鹼、高鹽、缺水和缺乏食物環境的優勢物種。雖然在高溫多雨的季節,混凝土的外的細菌能進到內部,但牠們終究無法很好地適應混凝土的環境。所以夏季結束後,這些外來的細菌不是進入休眠狀態,就是被內部的細菌當成食物給吃掉了。也因此在有無 ASR 的情況下,混凝土內部的細菌組成都不會有太大的改變。

為了驗證混凝土內部的細菌可能是來自組成原料,研究團隊先分析了混凝土原料中的細菌組成,並和實驗初期與末期的混凝土樣本中的細菌組成做比較。結果發現,礫石(骨料的一部份)提供了混凝土內 50~60% 的細菌來源。

另一個提供細菌的重要來源是水泥,雖然水泥提供的細菌種類不像礫石那麼多,但隨著時間的推移會逐漸增加為第二多,而這個結果在有無加入飛灰的樣本中,都是一樣的。這也證實了,混凝土原料中的骨料(礫石)和水泥,是提供混凝土內部細菌組成的主要來源。

混凝土原料中的細菌組成與混凝土內部在實驗初期與末期的細菌組成。圖/參考資料 1

混凝土與細菌的關係

那麼這個研究的結果,能提供我們甚麼樣的資訊呢?研究團隊認為,既然混凝土內部的細菌組成是不太變動的,可以將細菌組成當作混凝土內部環境的「指標」。例如當檢測到混凝土內部的細菌組成有改變時,就表示混凝土內部的環境很可能也改變了。要知道混凝土內部環境的改變,會影響到混凝土的整體結構和安全性。

但想做這個應用,首先要確認混凝土內部環境的改變,確實也會讓細菌組成改變。另外這個研究只在美國進行兩年的實驗,因此研究的結果是否能應用到全世界的混凝土,要打一個很大的問號。畢竟混凝土所處的環境不同,其內部的細菌組成是否也會有所不同,是需要實驗驗證的。

除了做為「檢測」混凝土結構安全的指標,其實很早以前就有其他科學家提出讓細菌作為「修復」混凝土工具的想法了。這個想法的原理其實很簡單,藉由加入能產生碳酸鈣等可以填補縫隙的細菌到混凝土中,就能達到生物修復了。不過這種應用方法比起「檢驗」需要更多的實驗,畢竟我們現在連這些細菌會對混凝土產生怎樣的影響都不知道,一個弄不好,說不定本以為是修補用的細菌,最後卻變成破壞者。

雖然這個研究並不能告訴我們這些生活在混凝土內部的細菌,會對混凝土造成何種影響,但卻是一個讓我們了解細菌與混凝土之間的起頭。另外這個研究也再次證明了,即便環境再惡劣,生命自然會找到自己的出路~

參考資料

  1. Kiledal EA, Keffer JL, Maresca JA. Bacterial Communities in Concrete Reflect Its Composite Nature and Change with Weathering. mSystems. 2021 May 4;6(3):e01153-20
  2. 混凝土
  3. Alkali–silica reaction
  4. 波特蘭水泥
文章難易度
羅夏_96
52 篇文章 ・ 563 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

1
0

文字

分享

0
1
0
蓋房子高手?建築業的未來新星:科氏芽孢桿菌——《細菌群像》
麥田出版_96
・2023/03/12 ・1528字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • Bacillus cohnii   
  • 科氏芽孢桿菌
  • 形狀:圓
  • 直徑:0.6 至 0.7 微米
  • 前進:使用布滿細胞表面的鞭毛
科氏芽孢桿菌。圖/《細菌群像》。

會產生石灰的細菌

細菌不僅可以用於生產食物或提煉金屬,還可以用來建造橋樑和房屋。

例如科氏芽孢桿菌,這是一種一點都不起眼,但會產生石灰的細菌。它喜歡鹼性的生活環境,像是酸鹼值可達八的馬糞裡。但它也生活在鹼性更強的環境,全世界都有其蹤跡,甚至在歐洲、非洲、南美、土耳其的鹼湖裡,它會利用溶在湖裡的碳酸鹽產生石灰。

此細菌最初是在一九九○年代初期,德國微生物及細胞培養保藏中心的細菌學家在尋找偏好鹼性環境的新菌種時所發現,當時的土壤樣本來自一個鹼性土壤的牧場,裡面還殘留著馬糞。

科氏芽孢桿菌除了能夠忍受酸鹼值超過十二的強鹼,相當於氣味刺鼻的氨水的酸鹼值,還能形成孢子渡過長時間的乾旱期。細菌孢子的特性是具有極強的抵抗力,可以存活數十年或數百年,在特定的條件下甚至超過數百萬年(球形離胺酸芽孢桿菌(→ 78頁)還有發芽的能力。

科氏芽孢桿菌的名字源自於德國細菌學家費迪南.尤利烏斯.科恩(Ferdinand Julius Cohn),細菌學的奠基者,也是一八七二年第一個鑑識出芽孢桿菌屬這種小桿形細菌的學者。

研發能「自行修復」的混凝土

科氏芽孢桿菌能生活在鹼性環境中,能產生石灰,孢子經過長時間還具有發芽能力。結合這三種特性,令建築業對之產生興趣。一位荷蘭微生物學家專門研究會產生石灰的細菌,並嘗試研發出一種能自行修復的混凝土。

科學家試圖利用科氏芽孢桿菌研發出能自行修復的混凝土。圖/envatoelements

他的做法是將細菌孢子與銨鹽、磷酸鹽及養分混合在一起,封裝於黏土球裡,然後將這粒只有幾公厘大小的顆粒加入強鹼性的混凝土中。混凝土硬化後若一直保持緊密,便無事發生。但如果出現裂縫,開始長時間滲水,細菌孢子就會開始萌發。當細菌繁殖分裂,會消耗添加進去的物質,並不斷產生碳酸鈣填補裂縫。一道幾公釐寬的裂縫,只需數天時間即可修補完畢。

如此一來,科氏芽孢桿菌就可以解決混凝土結構出現裂縫的難題,否則定期必須進行的繁複維修,造成的損失可高達數十億歐元。除此之外,此細菌也能用在保護現存的建築物,在噴塗混凝土或修復液中皆已測試添加此細菌,用在已出現細微裂縫的建築構件上。

不過,此項產品至今尚未成熟,黏土顆粒仍然占據太多空間,進而影響混凝土的穩定性。還有載體材質、養分及混凝土之間的交互作用,以及孢子平均分布與釋放,與石灰形成的速度及過程等等,都還在改良中。如今,研究人員也測試其他能形成石灰的細菌是否適用。不過無論如何,科氏芽孢桿菌可說是混凝土生物修復劑的先鋒。

科氏芽孢桿菌這類會產生石灰的細菌,現在也運用在其他目的上。一家德國公司利用它來黏走採礦產生的灰塵。方法是將細菌加入培養液裡,灑在布滿灰塵的泥土上,六至四十八小時內就會產生石灰,將灰塵顆粒黏在一起形成砂岩,即固化灰塵。從前為了抑制灰塵,礦業公司必須使用大量的水,如今,藉由細菌的幫忙,就可以省下這些水了。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

1

4
0

文字

分享

1
4
0
高效率生存!生物界的空間利用大師:遍在遠洋桿菌——《細菌群像》
麥田出版_96
・2023/03/11 ・1874字 ・閱讀時間約 3 分鐘

  • Candidatus Pelagibacter ubique 
  • 遍在遠洋桿菌
  • 外觀:通常如月牙般略彎之小桿 
  • 長:0.37 至 0.89 微米 寬: 0.12 微米至 0.20 微米
遍在遠洋桿菌。圖/《細菌群像》。

高效率利用生存空間

假使將我們肚裡大腸桿菌的體型比作兔子,遍在遠洋桿菌的體型就如同小老鼠。這種無所不在的海洋細菌不只是能獨立生存的細菌中體積最小的[1],可能也是全世界最有效率也最成功的生物。每公升的海水裡,就有數以百萬計這種細菌,據推測,遠洋桿菌屬的總菌量在地球上高達 1027 至 1028,這個數目是宇宙中目前可觀測到之恆星數量的十萬至一百萬倍。

但這種細菌所創下的紀錄不只這項: 海水所含養分非常貧乏,微生物要生存,就必須主動將所需養分分子輸送進細胞內部。這會消耗能量,最後也一定會有所剩餘。遍在遠洋桿菌則生活在極限邊緣:擁有正好足夠其吸收養分及生長繁殖所需的能量,剛剛好,不多也不少。

遍在遠洋桿菌可說是生物界的空間利用大師,其用來維持新陳代謝和繁殖的胞內空間,少到令人難以想像。細胞內三分之二的空間用於新陳代謝,剩下的三分之一被遺傳物質占滿。在小小的空間裡備有感應系統,能偵測含碳、氫、鐵化合物及光線的位置,擁有必要的運輸系統,以及一切所需的酵素,能自行生產二十種維持生命不可或缺的胺基酸。

體積若是再小,就只能放棄全部或部分的新陳代謝。例如,更小的病毒基本上就是壓縮緊密的基因,會侵入其他生物的細胞中,將別人的新陳代謝系統據為己用。

如果養分充足,細胞內無須再具備持家基因,生活在這種環境的細菌或古菌的確可以小過遍在遠洋桿菌。例如生殖道黴漿菌(Mycoplasma genitalium),這是一種對人類致病的病原體,會在尿道、子宮等黏膜造成感染,體積僅有三百乘以六百奈米左右,但無法獨立生存[2]。二○一五年有學者聲稱在地下水裡發現更小的細菌,但直至今日為止尚未能成功培養,因此學界相當懷疑是否真實存在。

精簡而高效的演化結果

此外,遍在遠洋桿菌的維生機制,效率也出奇地高。它只有一百三十萬組鹼基對,共含約一千四百個基因,是至今已知可獨立生存的物種中最少的。沒有任何多餘的東西,只有必要的配置。甚至連遺傳密碼,也似乎為了減少能量消耗而有過最佳化的調整。

一如其他生物,遠洋桿菌的遺傳密碼由四種鹼基 A(腺嘌呤)、C(胞嘧啶)、G(鳥嘌呤)、T(胸腺嘧啶)所組成。但比起其他細菌,遠洋桿菌裡 A 與 T 出現較為頻繁,此點便是出於效能,因為 C 與 G 含有較多的氮(而這在海水中是稀有元素),製造起來較為困難,如同人們以盡可能節省墨水的方式寫作一樣。

遍在遠洋桿菌在其所屬的立克次體目裡,算是特異獨行的一支。因為除了它之外,所有立克次體目的細菌,都必須在其他生物細胞內才能存活,其中也有不少病原菌,例如普氏立克次體菌,流行性斑疹傷寒的病原菌,透過蝨子傳染。

生物學家研究遍在遠洋桿菌並不只因為其驚人的能源效能和基因體的構造,對生態而言,它也相當重要。因為所有遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多,且占有海洋細菌生物量的四分之一;在溫暖的夏季,甚至可能高達二分之一。由於它的主要食物來自死亡生物殘留下來的可溶性有機物,因此在地球的碳循環上,也扮演一個重要的角色。

遍在遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多。圖/envatoelements。

由於數量實在太龐大,因此也容易引起敵人的覬覦:至今已知有數種病毒,會侵占並消滅此種細菌。

遲至二○○二年,人們才知道遍在遠洋桿菌的存在。在那之前,人們只認得它的 rRNA(核糖體核糖核酸)序列,是一九九○年研究人員在北大西洋馬尾藻海的海水樣本裡所發現。這也是首批運用當時最新的序列鑑定方法檢測到的細菌之一,但當時無法成功地培養出來。最後研究人員用了養分很低的培養基,以及高度稀釋的樣本,並添加一種能附著在核糖體上的染劑用以判別才成功。

註解

  • [1] 審定注:一些寄生型細菌和古菌更小。
  • [2] 審定注:該菌倚賴人類細胞裡的現成養分存活。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

所有討論 1
麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

0

2
1

文字

分享

0
2
1
征服極端低溫!具有超強耐寒能力的細菌:冷紅科爾韋氏菌——《細菌群像》
麥田出版_96
・2023/03/10 ・1718字 ・閱讀時間約 3 分鐘

  • Colwellia psychrerythraea 
  • 冷紅科爾韋氏菌
  • 形狀:小桿狀
  • 顏色:淺紅色
  • 長:2.5 至 3.5 微米
  • 直徑:0.5 微米
  • 前進:使用鞭毛
冷紅科爾韋氏菌。圖/《細菌群像》。

攝氏 –196 度的世界

據當今研究結果所知,在生命出現的早期,地球上炎熱期與冰凍期交互出現,前者平均溫度可達攝氏五十度,後者溫度可低至地表完全凍結。火山爆發及隕石和小行星的撞擊,使地球溫度升高,經由化學反應及後來出現的生物反應消耗大氣層中的二氧化碳,又使地表變冷凍結。

對大多數的生物來說,今日地球是個既濕又冷的家。地表面積超過百分之七十全是海洋,其中三分之二又是寒冷的深海帶,終年溫度只有攝氏二至三度。地表上所有水域裡,淡水僅占百分之二點五,溫度卻也沒有太大差別:百分之九十的淡水,都儲存在極地冰塊及散布地球各處的冰河裡。

自人類開始定時測量並記錄溫度後,最低溫的紀錄是在南極測得的攝氏零下八十九點二度,不過那裡的溫度也從未上升到比結冰點還高。比較重要的是,有些地方雖有溫暖期,但在夜間或冬天會變得異常寒冷,像亞洲一些地方最高溫可達攝氏四十九度,但低溫時也會降到零下五十度。因此不難想像,為何這麼多的細菌都具有高溫差環境的適應力。

所有在低溫環境仍然活躍的細菌中,冷紅科爾韋氏菌特別引人注目:這種微生物在攝氏零下十度還可四處遊走,在攝氏零下二十度還能繼續生長分裂繁殖。甚至在攝氏零下一百九十六度超低溫環境,研究人員還可觀察到其新陳代謝的運作。

冷紅科爾韋氏菌能在液態氮(這可是能將花朵瞬間凍成易碎玻璃的物質)中將胺基酸吸收並用來組成自己的細胞。此特性要歸功於它的保暖聚合物及在細胞外作用的酵素,讓它被包覆在網狀的分子結構裡,就像穿了一件毛衣,保護其免於水分形成整齊的冰晶結構。耐寒細菌的細胞壁結構類似液晶,在極冷和高壓下仍然可以保持液態,這也解釋了為何它同時也耐高壓。

掌握低溫生物技術

科爾韋氏菌屬發現於一九八八年,發表研究結果的作者建議以美國微生物學家麗塔.科爾韋(Rita Colwell)之名來命名,以示敬意。科爾韋生於一九三四年,在一九六○年代發現沿海水域有霍亂弧菌,而且常寄生在以藻類為食的浮游性橈腳類[1]動物上。

在氣候溫暖或養分過剩導致藻類大量繁殖時,就會吸引這些細小的甲殼類動物前來,細菌也就隨之而來。科爾韋發現這項事實後,立即成立安全用水供應網,設法以盡可能簡單的工具,例如自造的過濾器,防止因飲用水造成的傳播感染。

此後,她還與其他伙伴一起創立 CosmosID 公司,以期快速檢驗出環境樣本中的細菌。為了向她致敬,南極一座山塊[2]就以她的名字命名。冷紅科爾韋氏菌的種小名 psychrerythraea,則由希臘文 psychros(冷)及拉丁文 erythraeus(紅色)組成,因這個細菌嗜寒並含有紅色色素。

科爾韋氏菌被應用於許多生物技術上。圖/envatoelements

冷紅科爾韋氏菌也可以在無氧的環境中存活,還可利用各種結構簡單或結構複雜的有機化合物做為養分。由於這種細菌能分解很多種含氮化合物,甚至還能利用硫來產能,因此相當適合利用它在寒冷地區處理環境污染問題。

除此之外,此種細菌也可能促進新疫苗的發明。科學家將病原菌重要的代謝基因替換成冷紅科爾韋氏菌的代謝基因,得到以下結果:病原菌在低溫下正常生長,但在常溫時停止生長,細胞逐漸死亡。這種弱化後的病原菌可用在活體疫苗,使身體在不受危害的狀況下產生足夠的免疫力。此法已在動物實驗中證實可行。

註解

  • [1] Copepoda,橈腳類或譯橈足類,海洋中數量眾多的一群甲殼動物。
  • [2] massif,又稱地塊,地質學中的一個結構單元,比構造板塊要小。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。