0

27
1

文字

分享

0
27
1

特定微型核糖核酸異常,有望成為辨識憂鬱症的生物標記

喀報CastNet_96
・2021/06/27 ・2818字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

根據世界衛生組織(WHO)1的統計資料顯示,截至 2020 年全世界約有 2.64 億人口罹患憂鬱症,為全球第四大疾病。台灣衛生福利部統計處2也指出,2019 年的主要死因排行中蓄意自我傷害(自殺)排行第十一位;在青年主要死亡原因中,自殺更是高達第二位,僅次於事故傷害。上述資料皆顯示預防心理疾病是刻不容緩的,為此,不少專家學者紛紛投入相關研究,嘗試找出憂鬱症的解方。

去年(2020 )安潔莉卡・托瑞斯貝里歐斯(Angélica Torres-Berrío)與賽西莉亞・弗洛斯(Cecilia Flores)等若干學者在《生物精神醫學期刊》發表一項與憂鬱症相關的研究3,該研究結果呈現 Netrin-1/DCC 指引系統以及名為 miRNA-218(miR-218)的微核糖核酸分子(microRNA)和憂鬱症有著一定程度的關聯。同時,學者們也提出 miR-218 作為憂鬱症的生物標記(biomarker,可反映出潛在疾病與其嚴重性的指標)的可能性。

有條不紊的大腦神經

大腦由成千上億個神經細胞組合而成,它們彼此藉著觸手般的神經纖維——也就是軸突(axons)相互聯繫,並交織成廣大的神經網路處理人類日常的一言一行。神經細胞間的關係像是大隊接力裡的跑者,軸突負責將接力棒(神經傳導物)正確地交接給下個棒次(即下一個神經細胞)。不過,在茫茫「腦海」中,軸突要如何找到相對應的神經細胞並正確地傳遞資訊呢?這時候就需要仰賴由配體(ligand,和受體結合的物質) Netrin-1 和其受體(receptor)DCC 組成的引導系統——它們可以拉著軸突前往正確的路。

在神經發育過程中,Netrin-1/DCC 系統透過調節突軸生長錐(growth cone)中的肌動蛋白(actin filaments)成長速率與改變軸突生長錐內的微管(microtubes)穩定性,使生長錐伸長、縮短或轉向,進而讓軸突產生化學趨向性,朝著對應的神經細胞前進。然而, Netrin-1/DCC 系統並不是終其一生都在工作,弗洛斯解釋,在人類成年後大腦內的神經網路會逐漸完備,為了穩定神經連結,大腦便促使 Netrin-1/DCC 系統關閉,而這個控制 Netrin-1/DCC 系統的開關即為 miR-218 。

-----廣告,請繼續往下閱讀-----

miR-218 屬於微核糖核酸分子的一種,為長僅 22 個核苷酸(nucleotides)的單股 RNA 片段。它與特定訊息核糖核酸(messenger RNA,mRNA)作用後,可抑制該 mRNA 轉譯(translate)出遺傳訊息,阻止 DCC 生成。 miR-218 接受到大腦指令後會調節 DCC 的分子量,當 DCC 濃度過低不足以和 Netrin-1 結合時, Netrin-1/DCC 系統會如同沒有原料的生產線般停止運作。

miR-218 和 Netrin-1/DCC 系統作用示意圖。圖/施奕如製

失衡、失常、憂鬱症

已有不少研究指出壓力會導致憂鬱症,而在本研究中安潔莉卡和她的團隊透過小鼠實驗、死後檢驗(post mortem)和全基因組關聯分析(genome-wide association studies)進一步觀察壓力和 DCC 間的關係。她發現在死於自殺的憂鬱症患者的大腦前額葉皮質(prefrontal cortex,PFC)中含有相對高量的 DCC 和較少的 miR-218 。當 DCC 和 miR-218 的比例失衡時,軸突會迷航至錯誤的腦區和不適當的神經產生連結,使大腦神經系統功能失常。這項結果除了提出人類腦中神經會持續變動的證據外,也證實壓力和前額葉皮質的異常有關。

前額葉皮質主要控管情緒、記憶和行為決策等功能,它和伏隔核(nucleus accumbens)與中腦腹側被蓋區(ventral tegmental area,VTA)共同組成中腦邊緣系統路徑(mesocorticolombic pathways)——也就是所謂的獎賞路徑(rewarding pathway)。人類行為的主要動機來源即為獎賞路徑,大腦透過分泌神經傳導物多巴胺(dopamine)促使人執行任務,當事件完成,多巴胺會為行為人帶來正向刺激如愉悅感、成就感;未來若行為人再次面臨相似任務時,他會受到獎賞路徑的作用而傾向再度執行該任務。然而,由 DCC 和 miR-218 失衡引起的前額葉皮質變異將使獎賞途徑作用失常,行為人便無法從事件中得到快感,讓其在旁人眼中看起來顯得無精打采、興致缺缺,進而衍生4出憂鬱症相關病徵。

中腦邊緣路徑系統示意圖。圖/施奕如重製 資料來源:Knowing Neurons

偵測生物標記,搶得治癒先機

曾有研究5表示,發生在青春期的早年壓力創傷(early life stress,ELS)可能會使發育中的兒童出現類似憂鬱症的病癥。除此之外,若個體在青春期曾受過壓力創傷,成年後個體罹患憂鬱症的機率會比其他人還高。這種現象其實不難預料,在還沒建構完備的大腦中,任何一個小突變都可能使整體構造產生難以預計的影響。

-----廣告,請繼續往下閱讀-----

「若 DCC 在一個還在發育中的大腦裡產生變化,我們可以預見它會對大腦的後續發展帶來多大的影響。」——弗洛斯

從前文可知,壓力導致 miR-218 的生物量異常時,將掀起一連串連鎖效應而促發憂鬱症相關病癥。本研究的發現之所以重要,是因為 miR-218 具有成為偵測——甚至是預測——憂鬱症的指標的潛力。若能在大腦尚未發育完全的青春期階段察覺 miR-218 異常的警訊,便能在腦區結構尚未產生嚴重損傷前投入相關治療,為後續可能發作或復發的憂鬱症打上一劑預防針。

神經疾病研究的未來展望

弗洛斯的團隊提出一種憂鬱症成因的可能性,雖然背後還有些許不確定因子和未釐清的脈絡,但仍舊幫助人類更進一步地了解大腦運轉的機制。縱使目前科學家尚未完全解碼人類特定腦區所對應的功能以及腦區之間的作用關係,但隨著認知科學、神經生物學和精神醫學等多領域的學者獻身投入研究,外加上與時俱進的神經造影技術與相關研究方法,我們可以期待有朝一日人類能更透徹地了解神經疾病作用機轉以及其治療、預防的方法,讓憂鬱症、躁鬱症等心理疾病不再是難解之症。

經顱磁刺激( transcranial magnetic stimulation,TMS )療程是目前臨床推出的其中一項憂鬱症治療方法。圖/施奕如重製,資料來源:NEUROSCIENCE

參考文獻

文章難易度
喀報CastNet_96
11 篇文章 ・ 5 位粉絲
國立陽明交通大學傳播與科技學系大三學生自媒體,文章撰寫類目含括科技新知、藝文評論、人物特寫、社會議題和專題新聞,以大學生的觀點出發撰寫與自身和社會相關的文章,內容豐富。 喀報CastNet網站:https://castnet.nctu.edu.tw/

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
為期刊拍張封面 顯微鏡下的科學魔法
顯微觀點_96
・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

最驕傲的時刻——影像獲選期刊封面

希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

-----廣告,請繼續往下閱讀-----

事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

歷經徬徨 受科學魔法吸引踏上研究路

對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

-----廣告,請繼續往下閱讀-----

原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

-----廣告,請繼續往下閱讀-----

曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

Science Trans 1
圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

超敏通道

圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

拍科學藝術照 封面也可以很抽象

對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

-----廣告,請繼續往下閱讀-----

她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

物種特異性表達

以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

Sciencetrans2022 1
圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
Jneurosci 3
圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

參考資料

  1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
  2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
  3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
  4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

查看原始文章

討論功能關閉中。

顯微觀點_96
10 篇文章 ・ 3 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

4
1

文字

分享

1
4
1
【從中國經典認識大腦系列】從「子非魚,安知魚之樂?」淺談主觀意識的本質
YTC_96
・2023/10/18 ・3086字 ・閱讀時間約 6 分鐘

宋劉寀群魚戲荇。圖/npm.edu.tw

惠施觀點:人不能知道魚的快樂

「子非魚,安知魚之樂?」出自《莊子.秋水》篇中的濠梁之辯。惠施認為莊子不是魚,又怎麼能知道魚是快樂的?這看似簡單的一句話卻點出困擾哲學家以及科學家數百年之久的問題,那就是主觀意識到底是什麼?

圖/Pixabay

濠梁之辯的情境是這樣子的。莊子和惠施同遊至濠水的橋梁。莊子說:「鯈魚出遊時很從容,這就是魚的快樂啊。」惠施說:「你不是魚,怎麼知道魚的快樂?」莊子回答說:「你不是我,怎麼知道我不知道魚的快樂?」惠施說:「我不是你,當然不知道你的想法,而你當然也不是魚,所以你不知道魚的快樂,這完全是可以肯定的。」莊子說:「請回到開頭的話題。你問我『你怎麼知道魚的樂趣?』既然你已經知道我知道,並且問我,那我就是在濠梁上知道的。」

既然莊子認為自己能知道魚的快樂,那我也想問莊子,你知道成為一隻魚又是怎麼樣的感覺嗎?

圖/YouTube

成為一隻蝙蝠可能是什麼樣子

在濠梁之辯後的兩千多年,美國著名哲學家湯瑪斯.內格爾(Thomas Nagel)也從想像自己是蝙蝠(注意不是小小鳥)的過程中獲得靈感,並在 1974 年發表了〈成為一隻蝙蝠可能是什麼樣子〉(What is it like to be a bat?)。他認為主觀經驗無法透過客觀描述來獲得,是心靈與物理之間的解釋鴻溝(Explanatory Gap)。簡單來說,就算我們知道蝙蝠是透過聲納來感知並飛行在空中,但因為我們不是真正的身歷其境成為一隻蝙蝠,我們還是無法知道作為蝙蝠是什麼樣的感覺。

-----廣告,請繼續往下閱讀-----
圖/YouTube

這種主觀經驗,哲學上稱作感質(Qualia),是指主觀意識經驗的特殊品質或性質。它們是個人直接體驗的主觀感受,無法通過客觀描述或第三人稱觀察來完全理解或解釋。感質是一種主觀的、非物理的屬性,無法被完全捕捉或解釋。它們涉及到我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等。

舉例來說,如果你試圖向另一個人解釋一朵玫瑰的芬芳,或者試圖描述一個人的愉快感受,這些主觀感受都屬於感質。它們是我們內心獨有的體驗,無法被他人直接體驗或理解。

另一個哲學家們喜歡舉的例子是「你和我看到的紅色是一樣的嗎?」這或許聽起來是一個很蠢的問題,因為當紅色物品擺在眼前,非色盲或沒有眼疾的一般人都能異口同聲說出該顏色。透過醫學研究,我們也都知道波長約 700 nm 的紅色光刺激到視網膜的錐細胞是我們大家都能看到紅色的原因。

不過,雖然紅色光能刺激每個人相同的視網膜錐細胞是不變的客觀物理事實,但沒有人能保證你和我主觀感受到的紅色是相同的,就像是幾年前網路爆紅的藍黑白金裙 (The Dress)(圖一),即使是同一條裙子的照片,有人說是藍黑裙,卻有人說是白金裙。這也說明看似客觀的色彩,也存在有主觀性。

-----廣告,請繼續往下閱讀-----
圖一、藍黑裙?白金裙?都幾咧。圖/The dress – Wikipedia

人類或許能想象自己作為一隻蝙蝠使用聲納來飛行導航,又或是把自己像蝙蝠般倒掛休息,但這和成為一隻真正蝙蝠的感受還是不同的。

感質可能埋藏在複雜的神經網路中

莊子和惠施的辯論背後探討了意識的本質,也引發人們對於知覺和主觀體驗的一種思考。即使經過數千年的探索,「意識究竟是怎麼產生的?」仍是一個深奧而又複雜的問題,也是所謂的「意識的困難問題(Hard Problem of Consciousness)」。從哲學角度,感質無法透過描述去感受,但從科學上來說,我們無法否認大腦是產生主觀感受的關鍵,這也讓神經科學家們好奇是否能找到感質的神經機制。

英國巴斯大學疼痛研究中心的教授羅傑奥普伍德(Roger Orpwood) 多年來進行感質的理論研究,他認為感質是局部大腦皮質網路訊息處理的結果。這個網路能轉換訊息結構(Information Structure; 訊息在大腦中的物理表現,主要是動作電位的模式)和訊息資訊(Information Message; 感質的基礎)(圖二)。當輸入的訊息結構被網路辨識,而產生訊息資訊,這網絡還可以輸出一個訊息資訊的表徵並進行下一個傳遞與轉換(Structure → Message → Structure → Message…)(圖三)。舉例來說,臭雞蛋的硫化氫(H2S)氣味感質是透過一層一層的網路後產生。 當鼻腔吸入硫化氫氣味分子後,嗅覺系統的訊息結構通過嗅覺神經束傳遞到嗅覺皮質網絡。而傳遞的訊息所獲得的資訊都建立在前一個資訊的基礎上。這資訊從硫化氫的第一階段的辨識內在身份(Inner Identiy),演變為硫化氫的內在形式(Inner Form),到發展成硫化氫的意象(Inner Likeness or Image),也就是硫化氫的感質體驗(圖四)。

知名美國神經科學家,研究意識神經機制多年的克里斯托夫.科赫(Christof Koch),也認為意識不是來自個別大腦區域,而是來自區域內和區域間高度網絡化的神經元。意識相關的神經區域(Neural Correlates of Consciousness (NCC))概念的興起,也希望透過實驗研究的方式來找到產生意識的最小神經集合,並了解哪些大腦的區域是產生意識所不可或缺的。

-----廣告,請繼續往下閱讀-----
圖二、當我們看到藍色後,大腦透過訊息結構的模式傳送到視覺皮層 V4 區域。對大腦來說,這就是一種訊息資訊,是我們主觀上看到的「藍色」。圖/frontiersin.org
圖三、網絡或神經元集合中的​​基本訊息處理。輸出訊息結構從被辨識的訊息資訊從輸入訊息結構中形成。訊息(Information)從結構(Structure)到資訊(Message),再到結構。圖/frontiersin.org
圖四、嗅覺感質的產生示意圖。圖/frontiersin.org

結論

莊子和惠施辯論河中的鯈魚是否快樂,以及雙方怎麼知道魚是否快樂,很有趣的帶到了哲學以及神經科學重要的議題。意識到底是什麼?我們能否知道其他人又是其他物種的真正主觀感受?

圖/Pixabay

感質是意識研究中的一個重要議題,它引發了關於意識本質和主觀體驗的哲學和科學辯論。有些人認為感質是生物或腦部運作的結果,而另一些人認為它們是超出物理過程的主觀現象。不論如何,未來仍需要更多的研究來了解意識產生的機制。

參考資料

所有討論 1
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。