0

0
0

文字

分享

0
0
0

奈米塗層展現豐富色彩變化

NanoScience
・2012/10/31 ・819字 ・閱讀時間約 1 分鐘 ・SR值 521 ・七年級

美國研究人員研發出一種顏色可改變的光學鍍膜(optical coating)。這種厚度不到20 nm的薄膜只要厚度改變個數奈米,便能顯現不同顏色,因此可望應用在金屬表面作為塗色層。此特性除了能用來製作亮麗的珠寶外,在科技方面亦有諸多用途,像是超薄光偵測器與濾光器、顯示器、光調制器,甚至太陽電池等。

電介質光學塗層幾乎是所有光學元件不可或缺的成分,一般由數層透明無損耗的材料所構成,每層的厚度則至少為波長的1/4。上述由哈佛(Harvard)大學Federico Capasso研究團隊所提出的超薄光學塗層則大不相同,他們採用了奈米級厚度且幾近不透明的高吸光電介質材料如半導體。

在該研究中,他們在金樣品表面鍍上7 nm的鍺薄膜能將顏色由金色轉變為粉紅色,多加4 nm則變為紫色,再加上4 nm則呈現深藍色,而4 nm還不及15個原子的厚度。Capasso解釋這種效果類似雨天路面浮油層會展現不同色彩,這是因為在油面反射與水面反射的光線會產生干涉。建設性與破壞性干涉分別導致光線的增強以及消弱。在此實驗中,吸光的鍺塗層取代油膜的角色,但令人驚訝的是僅需改變數個原子的厚度便足以產生豐富的顏色改變。

研究人員藉由改變薄膜厚度以調整干涉條件,因此能控制薄膜反射和吸收的特定波長,最後導致塗層顏色的變化。研究人員也將此鍺塗層覆蓋於銀的表面,發現在特定厚度下會呈現黃金色澤,亦可表現出蠟筆般的柔和色彩。

團隊成員Mikhail Kats表示,他們計畫持續探索此技術的藝術層面,像是產生炫亮顏色以及彩虹光輝等。此外,他們也打算開發其潛在科技應用,譬如光偵測器、濾光器、顯示器、光調制器及太陽電池。該團隊已為此鍍膜製程申請專利,包含標準微影術以及物理氣相沉積法(PVD)。他們目前正尋求將此技術商業化。詳見Nature Materials|doi:10.1038/nmat3443。

資料來源:Nanolayer makes a coating of many colours. NanoTechWeb [Oct 18, 2012]

譯者:丁逸勳(台灣海洋大學材料工程研究所)
責任編輯:劉家銘

轉載自 奈米科學網

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1120 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

4
2

文字

分享

0
4
2
蝴蝶翅膀的夢幻色澤,藏著奈米科技
李鍾旻_96
・2021/07/27 ・2988字 ・閱讀時間約 6 分鐘

在昆蟲中,色彩鮮豔又顯眼的物種往往使人著迷,尤其蝴蝶向來是相當受人喜愛的一群昆蟲。一般人見到蝴蝶時,目光肯定會集中在牠們那五彩繽紛的翅膀。

蝴蝶的翅膀表面布滿著無數的鱗片,每一個鱗片的長度大約介於 50 ~ 200 微米之間(1 微米 = 0.001 公釐)。不同種類的蝴蝶,鱗片的形態也會有所差異,但共通點都是非常容易脫落。

包含蝴蝶的鱗片在內,昆蟲身上呈現出來的許多色彩,是由天然色素所構成,這稱作「色素色」(化學色)。但也有部分顏色屬於「構造色」(或稱物理色、結構色),與體表結構的物理性質有關。

結構賦予的幻紫湛藍

構造色通常由週期性排列的微觀結構,如小突起、溝紋等所造就,這些結構使光線產生反射、干涉、繞射等光學效應,而讓特定波長的光被保留了下來。

構造色並常伴隨著「炫彩」特性,也就是色彩光澤會隨著人眼觀看角度的不同而出現些微變化,讓一隻昆蟲顯得璀璨閃耀。有些蝴蝶在展翅時,會呈現出類似金屬、珍珠般的光亮質感,這類特徵往往便是源自構造色。(註:炫彩(iridescent),也常被譯作「虹彩」、「虹光」)

中南美洲叢林中的「閃蝶」Morpho,又稱摩爾福蝶)是構造色相當有名的例子。閃蝶的藍色翅膀鮮豔奪目,質感宛如珠寶,因此身價不凡,是眾多標本收藏家愛不釋手的珍品。

英國自然史博物館收藏的黑框藍閃蝶(Morpho helenor peleides)標本。圖/作者提供

閃蝶翅膀呈現金屬藍色,然而翅表面的鱗片並沒有藍色色素,這樣的炫目的色澤歸功於鱗片上奈米尺度的多層次塔狀結構。當陽光映照在鱗片時,部分光線可能會直接被反射,有些光線則穿過部分結構,接著被底下層次的結構反射,而許多被反射的光線,彼此還可能發生交互作用。最終,鱗片的這些微結構反射了大部分藍色光芒,使得翅表面呈現明亮耀眼的金屬質感。

File:Morpho sulkowskyi wings.jpg
閃蝶鱗片上的細微塔狀結構,其表面又有層層的溝紋與脊起,這是讓光線產生變化的主要因素。圖/Wikipedia

鱗片已經非常的小,當然鱗片上的結構是我們人類肉眼所看不到的,所以科學家在探究這些構造時,必須透過電子顯微鏡才得以一窺究竟。

拿現實生活中的物品來比喻,可以說閃蝶體表閃耀的色澤,性質有些類似 CD 光碟片的表面。光碟片在光線下會顯現七彩的光澤,而這些光澤是光碟表面細小微妙的溝槽造成的繞射效果。

不同角度下的大藍閃蝶(Morpho didius)標本,可見其金屬光澤會隨光照的來源有所變化。圖/作者提供

在台灣的我們,除了博物館裡才有機會目睹的閃蝶,有沒有什麼活生生的例子可以讓我們一窺構造色呢?常見的「紫斑蝶」Euploea),就是很好的觀察對象。牠們不只是數量多,同時又是蝴蝶中動作較為緩慢的種類,因此要近距離接觸牠們並不難。

紫斑蝶前翅背面雖然呈黯淡的褐色,但當牠們展翅時,這些鱗片在陽光下會散發出藍色至藍紫色的絢麗色彩,並且顏色深淺隨著角度的變化非常明顯。這同樣是由於光線照射在鱗片表面的物理結構,反射了特定波長光線的緣故。

圓翅紫斑蝶(Euploea eunice hobsoni)一身深褐色的鱗片平時看似不起眼,但翅背面在陽光下會轉變為鮮豔的藍紫色。圖/作者提供

其實不只是成蟲,構造色也可見於紫斑蝶的蛹。紫斑蝶的蛹呈亮麗金黃色或銀色,炫彩極為明顯,這是由於表皮底下層層排列的薄膜狀結構,對光線產生了影響。

當然,構造色的形式還存在許多昆蟲身上,常見的幻蛺蝶Hypolimnas bolina kezia)、蘭嶼的珠光裳鳳蝶Troides magellanus)都是構造色相當鮮明的例子。一些金屬質感的吉丁蟲、金龜子、灰蝶,其華麗的外觀往往也與構造色脫不了關係。

圓翅紫斑蝶的翅在某些角度下光澤不明顯。圖/作者提供

這一身醒目的光澤,對昆蟲而言可能帶有警告的意味,因為許多鮮豔明亮的昆蟲有毒,或嚐起來具有特殊臭味。日光下閃爍的炫彩也可能具有隱蔽的效果,或者與同種個體間的辨識溝通有關。

圓翅紫斑蝶的蛹,外觀質感如同金屬。圖/作者提供

似白非白的鱗片

我們可能常常直覺的把構造色與光亮的炫彩畫上等號,事實上在大自然裡,生物的構造色不見得都是如此。

我們在平地或山區都有機會見到,分布範圍相當廣的白粉蝶Pieris rapae),身上其實也具有大片的構造色,但我們在牠身上看不到光輝的炫彩現象。

白粉蝶的翅膀,有局部的鱗片具有黑色色素而形成深色斑塊,其他區域則主要呈白色,或略帶有一點淡黃。以往,白粉蝶身上單純的色彩多被認為是色素色,可是那些佔大多數的白色鱗片,實際上並不含白色的色素

白粉蝶的翅膀上有著非炫彩性的構造色。圖/作者提供

在白粉蝶的鱗片表面,具有許多枝狀的構造,其表面又附著了許多如珠子般的微小顆粒,顆粒本身也沒有色素成分。其實是這些顆粒反射了特定光線,導致翅膀呈白色的構造色。

不管是構造色的成因,以及所造就的色彩樣貌,當中複雜且多樣的機制,往往遠超出人類所想像。許多的昆蟲的表皮,構造色與色素色這兩類色源,並時常同時存在,兩者交織構成體表展現的色彩

用「光」代替顏料上色

物理結構形成的色彩,理論上能夠長期存在,能夠避免褪色的問題,人類也從中得到了不少科技靈感,試圖在工業產品上重現這般的顏色。

日本的纖維公司便參考了閃蝶翅膀的原理,研發出不使用化學染料,而是運用物理特性顯現色彩,名為「藍默纖維」(Morphotex)的環保材質。這樣的材質有什麼優點呢?構造色呈色的纖維不需要經過傳統的化學染色製程,能減少產生的廢料,亦減低了水資源與能源的消耗。

陽光下的異紋紫斑蝶(Euploea mulciber barsine),藍紫色光澤明顯。圖/作者提供

如果掌握了不會褪色的顏色技術,還有機會應用在太陽能板塗料、印刷、化妝品、鈔票防偽等方面,幫助解決許多技術問題。

昆蟲及各式動物與生俱來的外貌,有時比人類費力研發出的技術都要精巧得多,甚至可能悄悄改變人類的生活。人類應該善待並維護自然資源,這顯然是很重要的一項理由。

參考資料

  1. What Gives the Morpho Butterfly Its Magnificent Blue?
  2. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411.
  3. Ragaei, M., H.S. Al-Kazafy, N.A.E. Farag, H.H. Elbehery, and A. Abd-El Rahman. (2017). Role of photonic crystals in cabbage white butterfly, Pieris rapae and queen butterfly, Danaus glippus coloration. Biosci. Res. 14: 542-547.
  4. 王仁敏(2017)。蝶翼的絢麗幻色。蝶季刊 2017 卷 2 期:19 – 19。

李鍾旻_96
7 篇文章 ・ 8 位粉絲
目前大部分時間都在觀察、寫作和拍照,曾獲金鼎獎兒童及少年圖書獎、世界華人科普新秀獎、人與自然科普寫作桂冠獎等。著作:《台灣常見室內節肢動物圖鑑》(2021)、《自然老師沒教的事6:都市昆蟲記》(2015)。

0

15
5

文字

分享

0
15
5
兵不厭詐,這是戰爭!奈米級的特洛伊木馬屠城記,點燃科學家與癌細胞的戰火
羅夏_96
・2020/12/05 ・2434字 ・閱讀時間約 5 分鐘 ・SR值 548 ・八年級

大家都喜歡禮物,但如果今天這個禮物包藏了致命物質,你還喜歡嗎?就像希臘人送給特洛伊人的木馬一樣,看似是戰利品的禮物,結果卻是包藏禍心的可怕毒藥!

新加坡南洋理工大學替癌症治療開啟一個新方向。圖/Pexels

近期,新加坡的南洋理工大學團隊研發出一種新的抗癌方式。將 L-苯丙胺酸 (L- phenylalanine) 包覆在奈米顆粒上,癌細胞吸收後會使其自行凋亡。雖然這項發現仍在早期研究的階段,但目前在細胞實驗和老鼠實驗,皆有不錯的效果。

癌細胞需要很多、很多的胺基酸

對於快速生長的癌細胞,往往需要吸收大量的胞外必需胺基酸來支持其快速生長,因此不少癌症的表徵之一就是:負責攝取胺基酸的基因1會大量表現

此外,不少研究也都證實,若我們能夠減少癌細胞的胺基酸攝取,就能有效降低其生長速率。因此科學家們相信,嚴格控制癌症病患飲食中的蛋白質含量,並搭配藥物,可能有助於癌症的治療。

此種治療方式不只需嚴格控制病患飲食中的蛋白質含量,也要對病患身體有足夠的了解。圖/Pexels

但這種治療方式需要醫師對病患的身體狀況有良好的了解、監控和支持,且有造成病患營養不良的風險,對於有惡病質 (Cachexia)2 的病患,更是不適合。

因此,如何將癌細胞對於必需胺基酸的大量需求結合到癌症治療中,成為一大難題。

暗藏「毒藥」的胺基酸大禮包

針對這個問題,南洋理工大學的研究團隊設計了一種新的治療方式。將 L-苯丙胺酸這個必需胺基酸包覆在直徑 30 nm 的矽製奈米顆粒上,並將此特製奈米顆粒命名為 Nano-pPAAM 3

該團隊先前的研究顯示,多孔抗癌藥物運輸用矽製奈米顆粒,被細胞吸收後會使細胞內的活性氧物質 (Reactive oxygen species,簡稱 ROS) 大量產生,使其因此產生細胞凋亡 (apoptosis)。

因此順著這個思路,他們設想:「若將癌細胞需要的必需胺基酸包覆住這些矽製奈米顆粒,是否能使癌細胞在吸收後自行凋亡?」就像特洛伊木馬一樣,外表看似是給癌細胞的禮物(必需胺基酸),但裡面卻是包著致命的士兵(奈米顆粒)

被胺基酸包覆的矽製奈米顆粒,就像是暗藏著敵人的特洛伊木馬,讓癌細胞以為是送給它的禮物,卻可能讓它自行凋亡。圖/wikipedia

他們的研究結果指出,比起傳統的抗癌藥物 Cisplatin,Nano-pPAAM 能更專一的殺死乳癌、皮膚癌和大腸癌細胞而不傷害一般細胞。在裸鼠實驗中,Nano-pPAAM 也能明顯地抑制老鼠體內的移植的乳癌細胞的生長。

以前的奈米顆粒,只是毒藥的「司機」

該研究的計畫主持人指出,這個研究的方向和傳統的奈米顆粒研究不同。

傳統的奈米顆粒是用於包裹和運送,將抗癌藥物包裹並運送到腫瘤中再做刺激,使其釋放抗癌藥物到腫瘤中。

在傳統的療法中,奈米顆粒僅僅扮演運輸的角色,本身並無藥效。然而,在這一次的研究中,奈米顆粒不會攜帶任何抗癌藥物,而是使用奈米顆粒本身的性質,直接讓癌細胞產生大量的活性氧物質並讓癌細胞自行凋亡。

在之前的研究中,科學家大多將奈米顆粒當作「毒藥的運輸工具」,而非「毒藥」本身。圖/Pexels

他們在先前的研究無意中發現,特定大小的奈米顆粒送入細胞後,會產生大量的活性氧化物質,他們才因此決定深入研究奈米顆粒的哪些物理參數會導致活性氧化物質在細胞內的生成。

如何從司機變身為致命毒藥?

先前的測試初步顯示這個現象與奈米顆粒的材質有關,同樣大小的奈米顆粒若以銀和鈦合成不會產生活性氧化物質,只有以矽合成才會產生

因此後續的測試他們先建立了大量的矽製奈米顆粒的篩選庫,以奈米顆粒的大小孔洞數還有送入密度為篩選標準,成功找出能使細胞產生大量活性氧化物質的奈米顆粒所具備的大小、孔洞數還有送入密度。

這樣做有什麼好處呢?

以往就算奈米顆粒成功攜帶藥物進入組織中,我們也需要各種化學與物理的刺激,才能讓奈米顆粒釋放出藥物並產生藥效,再加上腫瘤組織附近的微環境相當複雜,使得這類刺激不易發生,讓癌症治療面臨嚴峻的難關。

以往奈米顆粒攜帶藥物的療法中,因為難以刺激奈米顆粒釋放出藥物,因此增加了治療癌症的難度。圖/Pixabay

不過,本研究中的 Nano-pPAAM 完全不需要額外攜帶藥物,因此在對抗癌細胞的過程中,我們就能免去藥物運送和代謝的困擾,為未來癌症治療提供一個新的方向。

接下來,研究團隊將往「專一性」的方向做研發,使其能精確地攻擊特定種類的腫瘤,同時提高其殺死癌細胞的能力。或許,未來 Nano-pPAAM 能結合更多治療方式,如近來火熱的免疫療法,讓我們在對抗癌症的道路上尋找更多的可能與希望。

註解

  1. 此基因爲 LAT1 (The L-Type Acid Transporter)
  2. 惡病質 (Cachexia) 是癌症病患因體內賀爾蒙代謝與新陳代謝異常,或因食物攝取量減少所產生的營養不良症狀。
  3. 此特製奈米顆粒的全名為:Nanoscopic phenylalanine Porous Amino Acid Mimic。

參考資料

  1. Wu, Z., Lim, H. K., Tan, S. J., Gautam, A., Hou, H. W., Ng, K. W., … & Tay, C. Y. (2020). Potent‐By‐Design: Amino Acids Mimicking Porous Nanotherapeutics with Intrinsic Anticancer Targeting Properties. Small16(34), 2003757.
  2. NTU Singapore scientists devise ‘Trojan horse’ approach to kill cancer cells without using drugs 
  3. Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability
羅夏_96
52 篇文章 ・ 737 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟