0

0
0

文字

分享

0
0
0

拯救生命的新科技:都卜勒雷達的升級(雙偏極化技術)

阿樹_96
・2012/09/06 ・569字 ・閱讀時間約 1 分鐘 ・SR值 565 ・九年級

前篇文章已經簡略的敘述氣象雷達和雷達回波圖的判讀方式。基本上現在中央氣象局使用的雷達都是都卜勒雷達,如同中學時學過的都卜勒效應一般,當救護車靠近時,聲音會變得高昂,而遠離時則越來越低沉,而雷達波打到運動中的目標物時,反射波也會產生波長的變化,當目標靠近時,波長會變的更密,相反的目標遠離時波長就會變疏,利用這個原理可以觀測水滴、暴風等相對移動的速率。

近年來美國大氣暨海洋總署NOAA正在升級美國境內的雷達技術,這次最主要就是在說雙偏極化(dual polarization)技術的優點與設置時程,而NOAA甚至撰文與拍攝影片來進行推廣與教育,告訴大眾新技術的提升可以有哪些幫助?

包括了:

  1. 分辨不同的降水類型:像是冰雹、雨滴的差異。
  2. 龍捲風帶起來的碎片,尤其是像美國這樣經常發生龍捲風肆虐的國家,利用雷達監測龍捲風的威力程度、行進路徑,以達防災之效。
  3. 使訊號更清晰,過濾蟲鳥飛經雷達附近時造成的雜訊。

以上這些內容,也可以從影片中得知,NOAA的介紹影十分簡單明瞭,且生動活潑,個人覺得頗具宣導效果。

 

參考資料:Life-saving technology upgrade coming to a Doppler radar near you. NOAA [August 23, 2012]

文章難易度
阿樹_96
73 篇文章 ・ 19 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。

0

16
3

文字

分享

0
16
3
隱藏在大氣裡的神祕訊息!用氣象衛星監測火山爆發產生的氣象波動與環境汙染
Ciao True_96
・2022/01/30 ・4193字 ・閱讀時間約 8 分鐘

  • 作者/邱麒豪(國立中央大學大氣物理研究所博士候選人)、劉千義(中央研究院環境變遷研究中心副研究員)

咦!地球彼端的火山爆發和我們有什麼關係?

距離臺灣八千多公里的東加王國發生了前所未有的火山爆發,當太平洋周遭國家開始擔心海底火山噴發引起海嘯的同時,卻有更多不為人知的事情正悄然發生。到底火山噴發的同時除了引發海嘯還造成什麼樣影響呢?讓我們一同來瞭解!


看不見也摸不著的氣象波動——大氣重力波

大氣的重力波現象並不罕見,通常是垂直方向上的氣塊受到擾動,在浮力(作為恢復力)與重力的雙重影響下而在水平面上形成振盪式的波動。

常見的氣流流經山峰並在背風處產生圓盤狀的雲系(莢狀高積雲),以及晴朗穩定天氣下出現的波狀高積雲即為大氣重力波在自然這張畫布下最好的圖繪。而火山爆發,同樣有機會引起大氣重力波。

西元 2022 年 1 月 15 日,臺灣時間下午 12 時 20 分(事發當地時間下午 5 時 20 分)左右,位於西南太平洋島國——東加王國首都努瓜婁發(Nuku’alofa)北方65公里的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha’apai)海底火山大規模爆發,伴隨而來的地震與引起的海嘯引發世界的關注。

這場可能是 21 世紀以來最大規模的火山噴發,其一連串的後續效應不僅被地震儀及海象儀器記錄下來,當天下午 8 時左右,臺灣的氣象站也陸續觀測到海底火山噴發造成的氣壓變化,根據觀測資料顯示,這次的海底火山噴發事件在臺灣造成的氣壓變化量約 1 至 2 百帕(hPa),這大約是日常標準大氣壓力的千分之一至千分之二的變動(圖一)。

【圖一】中央氣象局 222 個自動氣象站氣壓擾動動畫。
圖/中央氣象局第二組;資料來源:中央氣象局

若將地面氣壓資料的解析度提高到每分鐘,並將中央氣象局109個局屬測站由東南向西北排列,繪製成臺灣高密度測站氣壓擾動的二維時間序列圖(圖二),火山噴發由東南向西北傳遞的能量作用於大氣中最先於臺灣東南方的蘭嶼測站測量到,時間上和最晚被觀測到的馬祖測站相差約 25 分鐘。其次,火山噴發造成的大氣波動除了氣壓變化最為劇烈的主波外,尚有前導波與數次的餘波產生。

【圖二】中央氣象局 109 個局屬測站氣壓擾動二維時間序列圖。
圖/黃椿喜博士;資料來源:中央氣象局

綜觀全球的大眼睛——從氣象衛星看見大氣重力波

從上圖可以觀察到,這些波動的週期約為 10 到 15 分鐘,不容易從 10 分鐘的觀測資料中發現。目前在西太平洋與東太平洋地區監測的地球同步衛星向日葵八號(Himawari-8)與 GOES-17,可分別提供 2.5 分鐘與 1 分鐘高解析度的衛星觀測,對於高頻的大氣波動將有比過往更好的解析能力。

不只是地面氣象觀測站,位於地球上空 3 萬 6 千公里的地球同步衛星同樣也捕捉到火山噴發的證據。日本氣象衛星 Himawari-8 觀測到火山噴發後產生的陣陣漣漪(圖三),以火山噴發口為中心產生的漣漪即為大氣的重力波現象。

【圖三】火山噴發造成雲頂高度變化的重力波振盪。
圖/邱麒豪;資料來源:Himawari-8

東加王國所在的區域不僅位於向日葵八號的觀測網內,也涵蓋在美國的地球同步衛星 GOES-17 監測之中。下圖(圖四)為 GOES-17 氣象衛星紅外線水氣頻道每 10 分鐘的亮度溫度差,藉由對流層中層的水氣頻道雲圖可以明顯看到火山爆發產生的內重力波由火山口為圓心向外傳遞。

【圖四】火山噴發造成的重力波振盪。
圖/CIMSS / UW-Madison;資料來源:GOES-17

火山噴發引起快速上升的氣流與火山灰造成的重力波現象在學理上是可行的,但在觀測上實屬少見,特別是海底火山能將大量的火山灰與氣體穿過海洋快速釋放至大氣中,並造成如此壯觀的大氣波動並不是件容易的事。

這場大氣波動產生的雲系高度深,範圍廣,觀測到的雲頂紅外線亮度溫度達 -105.18ºC 可能打破了自 20 世紀末有雲頂溫度的監測以降,最低溫的紀錄(圖五)。

【圖五】火山噴發產生的重力波雲,雲頂亮度溫度達 -105.18ºC。
圖/CIMSS / UW-Madison;資料來源:GOES-17

除了上述的兩顆地球同步衛星,搭載於美國國家航空暨太空總署(NASA)之 Aqua 衛星上的大氣紅外探空儀(Atmospheric Infrared Sounder,AIRS)也同時發現了此一現象(圖六)。德國尤利希超級運算中心的大氣科學家——霍夫曼博士(Dr. Lars Hoffmann)說:「AIRS 自 2002 年 5 月開始觀測以來,從未在過往的火山噴發個案中發現過類似的情況」,這也意味著這次的海底火山噴發事件是前所未有的劇烈。

【圖六】AIRS/Terra 觀測到數量極為龐大的同心圓狀重力波雲。
圖/Dr. Lars Hoffmann;資料來源:AIRS/Terra

英國牛津大學物理系大氣、海洋與行星物理組的氣候科學家 Scott Osprey 博士也表示:「這次噴發可能會干擾熱帶地區風向週期性的逆轉,長遠看來或許會造成歐洲地區天氣型態的改變,必須非常小心地關注它造成的變化」,可見整個地球系統都可能因為這次的火山爆發造成巨大的影響。

雲圖之外——衛星於汙染物探勘之應用

衛星不僅僅能夠監測雲層的移動與大氣中的水氣分佈,近年來較為廣泛的應用是使用衛星針對大氣中的汙染因子做大範圍的遙測。舉凡工業污染排放之氣溶膠、交通源排放之二氧化氮,以及生質燃燒產生之煙塵與黑碳微粒,均可藉由衛星的觀測進而推估汙染程度,並搭配氣象模式的模擬進行短期的預警。

下圖(圖七)為 NASA 的 Suomi-NPP 衛星觀測到的氣膠垂直剖面分佈與雲頂高度,可以清楚看到伴隨火山噴發的氣膠粒子衝破對流層進入平流層,高度可達 30 公里。這些氣膠粒子在平流層中不易沉降至地表,長期下來可能會對氣候造成重大影響。舉例而言,氣膠依照光學特性的不同可粗略分為散射能力較強與吸收能力較強的兩大群體,散射能力較強的氣膠進到平流層中將造成更多的太陽短波輻射被反射回外太空,進而降低地球平均溫度(氣膠直接效應);反之吸收能力好的氣膠則是會讓地球溫度上升。

【圖七】Suomi-NPP 探測到火山噴發的氣膠粒子可衝破對流層進入平流層。
圖/Dr. Ghassan Taha;資料來源:Suomi-NPP

而對流層中的氣膠對氣候的影響更為複雜,會進一步改變雲的微物理狀態,在特定條件下吸濕性高的氣膠容易成為雲的凝結核,若大氣中的水氣含量不變,這些新形成的雲凝結核有可能與大氣中既有的雲滴競爭原先的水氣,進而致使雲滴數目增加且雲滴平均的粒徑降低,進而散射截面積增加,反射更多太陽光而達到降溫的效果。但也因為雲滴粒徑變小後,變得不利於雲滴粒子間的碰撞合併過程而形成為雨滴,使得地表降水減少與雲的生命週期增加,此謂氣膠間接效應。

不管是氣膠的直接效應或是間接效應都非常複雜,會受到氣膠種類、氣膠數量、氣膠粒徑分佈、大氣條件等影響,也正因為充滿了各種不確定性,氣膠的氣候效應預測非常困難,目前還需要更多的觀測,特別是用大範圍的衛星觀測加以驗證與評估。

火山噴發除了氣膠粒子的污染以外,對環境造成的另一個衝擊是大量的氣體被釋放到大氣中。常見的火山氣體有:水氣(H2O)、二氧化碳(CO2)、二氧化硫(SO2)、硫化氫(H2S)與氮氧化物(NOx)等。

以二氧化硫為例,評估大氣中微量氣體多寡的單位為杜布森(Dubson, DU),指的是一大氣壓的空氣柱中,該氣體分子累積起來的厚度(垂直積分)多寡。若將氣柱中的二氧化硫全部累積在一起相當於 10 微米厚,稱為 1 DU 的二氧化硫。SO2 氣候平均值約略低為 0.5 DU,歐洲氣象衛星開發組織(EUMETSAT)的 MetOP-B 與 MetOP-C 觀測到的峰值高達 50 DU 以上,高於氣候平均值 100 倍。(圖八)

【圖八】MetOP-B 與 MetOP-C 發現火山噴發的二氧化硫濃度超過氣候平均值 100 倍。
圖/Dr. Simon Carn;資料來源:MetOP-B & MetOP-C

氣象與環境衛星遙測之展望

近年隨著科技的發展與遙測技術的精進,氣象衛星能提供的不僅僅是精美的天氣雲圖,還有許多從雲圖看不出來的科學議題可加以探討。這些科學議題不單只存在於象牙塔內,更多且更重要的是生活上的應用。社會大眾關心的是:下午的聚會會不會下雨?明天空氣汙染有多糟?或是下禮拜一晚上會多冷?

衛星掩星觀測技術的發展(如:福衛三號、福衛七號、Sentinel-6 等)補足了廣大洋面探空資料的缺失以及人力施放的不足,蒐集偏折角資訊與折射率變化推估出的大氣垂直溫溼度剖面,藉由數值預報模式的資料同化系統改善天氣預報的誤差

汙染物濃度的監測也可以藉由衛星的觀測進行評估,不論是民眾在乎的近地表懸浮微粒濃度抑或是工業燃燒造成的空氣汙染,皆可藉由衛星的探測第一手掌握(如文章提到的 MetOP-B、MetOP-C 以及 Sentinel-5P)。

降雨來自天空中的雲,若能對雨的前驅物—雲有更深的瞭解,降雨的推估也能做得更準確。以我們所處的東亞地區而言,像是以 Himawari-8 觀測而開發的雲微物理科學資料,或是國際上整合多重衛星觀測的日本 GSMaP 、美國 NASA IMERG 等衛星推估的地面降水資料就是很好的例子

當然,科學的發展並不是單純為民生服務,但在發展科學的同時能兼顧民眾的福祉相信也是社會大眾所樂見的。

延伸閱讀

  1. Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min (2020), Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, J. Geophys. Res., Vol 125.
  2. Lin, C.-A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld, C.-K. Chou (2019), Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens., Vol 11, 1738.
  3. Explosive eruption of the Hunga Tonga volcano” in CIMSS Satellite Blog.
  4. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere” in nature’s news article.
  5. 中央氣象局預報中心副主任黃椿喜博士臉書
  6. 報天氣-中央氣象局」臉書粉絲專頁
Ciao True_96
1 篇文章 ・ 3 位粉絲
主修大氣科學,參加天文社。 年輕的外表下住著古老的靈魂,喜歡看老電影,也喜歡拿著底片相機記錄生活中的點點滴滴。 是個科學工作者但對藝術、音樂、歷史與文化也稍有涉略,畢竟「什麼都略懂一點,生活就多采一些!」

1

12
0

文字

分享

1
12
0
我已經鎖定你了!多頻譜影像處理演算法於軍事監測系統的應用
科技大觀園_96
・2021/11/04 ・2878字 ・閱讀時間約 5 分鐘

戰場上,分秒之差就能是決定勝敗生死的關鍵。因此如何更迅速捕捉敵軍的動向蹤跡,便成為國防軍備的一大研發重點。多頻譜影像技術能確切捕捉到物體反射的光譜資訊,並已在衛星、醫學、動植物辨識領域取得可行的成果。來自中正大學的研究團隊,便致力於建立多頻譜影響處理演算法的資料庫,期望能應用在軍事目標物的偵測追蹤上,為前線戰士助一臂之力!

掌握物體的「本色」:多頻譜影像技術

色差,是日常生活中會碰到的困擾:不管是印刷品的呈色與預想不符,或是網購的衣服顔色與想象中有所落差。這與傳統的色彩影像量測技術,如電腦電視使用的 RGB 三原色光模式及彩色印刷的 CMYK 四分色模式,在不同裝置上檢測及重現時出現的差異有關。但是,只要回歸到視覺與色彩形成的根本——光線,我們可以解決這些問題。

兩種模式最大的差異在於,三原色光模式的原理是紅、藍、綠的光線同時照射在視網膜上,我們眼睛會辨識成白光。四分色模式則是青色、洋紅、黃色顏料疊色後會變成黑色。RGB模式常用在螢幕等發光產品上,而CMYK模式則使用在印刷上。

大家都知道,光源照射物體後,會根據物體特性產生反射、吸收和透射等現象,人眼接收了物體反射的光線,會經由大腦分析視網膜收到的電子訊號,產生視覺色彩的感知。光線是一種電磁波,不同顔色的光有不同的頻率。而所謂的頻譜,就是物體的反射頻譜、投射頻譜或發光頻譜。頻譜影像,顧名思義即是每個畫素都帶有頻譜資訊的影像。

號稱可以捕捉物體本色的多頻譜影像技術(Multi-spectral imaging),厲害之處在於它可以直接擷取畫面頻譜的反射值。這個反射值是唯一值,不會受到不同廠牌的擷取技術或光源影響,因此是十分準確的影像資訊。一般頻譜影像的波段範圍落在可見光範圍(380 – 780nm),在定義上高光譜影像(hyper-spectrum)泛指使用儀器設備所拍攝到的多頻譜影像資料;超頻譜影像,則是以演算法將影像進行計算所得。其所具備的豐富影像資訊,也成為近年來醫學影像判識(如早期癌症病變的診斷)及衛星遙測的一大福音。

衛星遙測也可以使用多頻譜影像技術來提升影像資訊品質。圖/國家太空中心

從依靠人力,到交給演算法裝置代勞的自動目標識別演算法

自動辨識技術(Automatic target recognition,ATR)的源起,可以追溯至二戰前的雷達(註1)。雷達的操作原理,便是將電磁能量以定向方式發射至空間中,藉由接收空間中的物體所反射回來的電波,計算出物體的方向、高度及速度,並探測物體的形狀。過去的雷達偵測技術,仰賴訓練有素的操作員去解讀雷達訊號,如辨識戰機的大小、型號,以幫助戰場上的同胞第一時間掌握敵營的部署。

不過,人的經驗能力終究有限,因此軍方目標偵測系統也逐漸從人力辨識,逐步發展至交由演算法或裝置來代勞,即自動辨識技術 ATR。準確率更高、速度更快的 ATR,除了可辨識海陸空的軍武,也能偵測生物性目標如動物、人類和植被。目前軍事上通常僅利用一個波段,如近或遠紅外光的資訊來判別目標物,但利用多頻譜影像或超頻譜影像豐富的資訊來進行目標物識別,卻有待發展。

雷達能夠計算出物體的方向、高度及速度,並探測物體的形狀。圖/pixabay

利用多頻譜影像技術,打造鎖定目標的軍事鷹眼!

如果能將多頻譜影響處理演算法帶來的豐富影像資訊,與 ATR 結合,將有望能提升偵測目標的準確率,在戰場上占盡先機。但這不是一件簡單的事:首先,軍武裝載空間有限,因此需以極精簡的光學裝置,來擷取到光路相同的不同波段影像;再來,多頻譜影像資料龐大,因此需整合不同波段的影像特性,以精確辨識俊基、船艦、坦克和建築等目標物;而如何將複雜的演算法轉化成運算夠快的晶片,應用在真實的武器上,也考驗科學家的能耐。

作為影像辨識技術領域的專業,來自國立中正大學的王祥辰教授研究團隊,就志在建立一套適於分析不同目標物特性的超頻譜影像資料庫、開發目標物偵測的多頻譜演算法程式庫,並打造一個方便高效的模擬及演算平台,讓軍方研究者可以進一步建立合適的 ATR 偵測法則。

這項計劃包含三個子系統,子系統 1 是建立多光譜及高光譜拍攝影像的資料庫。就像過去的雷達系統,是依賴熟練的操作員調度腦中記憶的資訊,去與雷達訊號進行比對辨識。要訓練機器裝置去指認出目標物,首先就得提供它一個可靠的影像資料庫作為基礎。為此,研究團隊在不同的天候條件下,拍攝不同波段下的各種目標物如電塔、水泥建築、海面船艦及空中飛行物,來建立一個涵蓋陸、海、空特性的多頻譜與高光譜影像資料庫。

接著,上述涵蓋不同波段的影像,可以經過子系統 2,進行超頻譜展開運算。在子系統 2 時,為了減少計算量,使用者可設定挑選效果最好的數個頻帶,讓目標與其背景的差異達至最大化。這個過程如同指導電腦來玩「大家來找碴」的游戲,讓電腦可以學會如何在不同的場景、天氣條件下,快速辨識出指定的目標物。

子系統 2 將原本有限頻段的多頻譜影像,轉換為特定目標物適用的超頻譜影像,作為子系統 3 的輸入。在這個友善而直覺的圖形化人機介面,軍事研究人員可以在複雜的影像資料庫及法法則程式庫中不斷進行模擬,找出不同目標物的最佳化演算法則,縮短軍事研發所需的時間,提高所開發武器的效能。

如今,王教授的研究團隊已完成三個子系統的建設。此項研究成果,預計可以應用在各式對地、對空及對海飛彈,以及各式影像偵蒐系統的 ATR 設計開發上,成為新一代的鷹眼。而該研究的系統,也能幫助縮減開發測試的時間,對演算法和超頻譜頻帶最佳化都將有所助益。

【注解】

1.雷達(Radio Detection and Ranging,縮寫為 RADAR),是始於二戰前的偵測技術,其原理是利用將電磁能量以定向方式發射至空間中,藉由接收存在於空間中的物體所反射回來的電波,就可以計算出該物體的方向、高度及速度,並探測物體的形狀。

參考文獻

所有討論 1
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

6
1

文字

分享

0
6
1
亂咬人的海浪?淺談海岸邊那個危險的瘋狗浪
Mia_96
・2021/07/19 ・2729字 ・閱讀時間約 5 分鐘

每到了夏季,海邊總是大家嚮往的好去處(雖然現在因為疫情影響,我們提倡乖乖待在家裡為臺灣防疫盡心盡力!),過往夏季時大家前往喜愛的陽光沙灘,總可以看到陣陣海浪拍打在岸邊,盡情享受清涼海水與徐徐海風的吹拂!

海浪可以如浪花般輕盈,卻也可以如海嘯般帶來巨大災害。圖/Pixabay

但!海洋並非總是風平浪靜,有時的海洋也會帶給我們突如其來的巨變,在新聞中時常聽聞的瘋狗浪即為其一。

到底什麼是瘋狗浪?又為什麼要稱呼他為瘋狗浪呢?

在海面傳遞的能量——海浪

要了解瘋狗浪的成因,首先要先了解海浪是如何形成的!

海浪的主要成因是風將能量從大氣傳至海面,當海面獲得能量時,海洋中的水分子便開始做圓周運動,這,就是海浪!上層海水拖著下層海水,能量一層一層地向下傳遞,傳遞過程同時受到水分子之間的摩擦力影響,能量逐漸減弱,因此在深層的海洋幾乎沒有波動產生。

當海浪開始向前傳遞時,越接近岸邊,海床逐漸升高,下層的水分子撞到海面下的海床,就會造成海浪的波速逐漸減緩,我們以下面這張岬灣圖簡單判斷波浪傳到岸邊時與海岸呈現的交角關係。

岬灣地形的形成原因為差異侵蝕作用,所以可以假設為在海面下的海床也與裸露在陸地上的岬灣一致,在岬的部分突出,灣的部分凹陷。圖/作者自製

當波浪(藍色箭頭)逐漸打進海岸時,受到海底地形的影響,其波速逐漸減緩,波浪逐漸偏向法線(黃色實線),越靠近海岸,波浪持續偏向法線,最終波浪前進的方向會與海岸漸趨垂直。

海岬上的突發大浪

海岬地形即是容易出現瘋狗浪的其中一個原因,從圖中可以發現,當海岬處波浪不斷聚集,能量匯聚會造成海浪的波高逐漸累積,此時的海岬,容易產生突發性的大浪,也就是我們俗稱的瘋狗浪。

另外,容易造成瘋狗浪的原因還有強風吹拂,當風速越強烈快時,海面獲得的能量就會更多,產生的海浪也會更為強烈,當強烈的海浪再加上碰到匯聚能量的海岬地形時,便更容易造成瘋狗浪的產生。

瘋狗浪並沒有明確的定義或是說法,因為瘋狗浪容易致在岸邊活動的人們於危險當中,就如同瘋狗一樣可能會亂咬人,所以我們習慣將突然發生或是強烈的海浪稱做瘋狗浪。

突如其來的大浪有可能越過海堤,沖上岸邊造成危險。圖/Pixabay

臺灣易發生瘋狗浪的時間與地點

在臺灣,最易發生瘋狗浪的時間便是颱風與東北季風盛行之季節:颱風強力的風速會在臺灣外海持續產生強烈的海浪,當海面不斷獲得能量,其傳至海岸邊的能量也會更多、更大;而冬季時的東北季風也是容易產生瘋狗浪的原因之一。

而臺灣的東北角因多為岬灣地形,則是瘋狗浪易出現的地點,但瘋狗浪並不局限於出現在東北角,只要有海岬地形,或是較為突出的堤坊、海岸都有可能匯聚能量,形成波高較高的海浪。所以當知道海洋上有氣旋產生、強烈的季風作用或是在岸邊感受到較為強力的海風吹拂時,都應盡量遠離岸邊才最為安全!

預知瘋狗浪—海洋雷達觀測系統

過去我們總認為海象難以預測(此海象非海洋中生活或是在海生館可以看到的海象,而是指海面上因為風力吹拂而造成海浪的情況!),因為海象預測需要考慮到風向風速的變化、海浪相互作用影響、海底地形等眾多原因,但風場環境瞬息萬變,間接也造成不斷變動的海象,再者,一般民眾較少需求接觸相關的海象預報,所以海象觀測一直不如氣象觀測發達。

台灣目前使用的為海洋雷達陣列推算海域中波浪的強度,發展出台灣海洋雷達觀測系統(Taiwan Ocean Radar Observing System, TOROS),提供給人民更為準確、進步的海象監測,即時性與預測性的海象觀測,使海洋運輸、漁業捕撈等工作或是休閒娛樂更加安全。

海洋雷達陣列是使用雷達發射雷達波,當雷達波入射到海表面時,碰到海洋中的海浪,便會以各方向散射,海洋雷達就是利用雷達波所產生的「布拉格效應」—當海洋上出現與雷達波波長有偶數倍數關係的海浪,會產生較為強烈且能量較大的雷達回波反射回雷達,來推算目前海面上波浪的波長!

而不同地點、距離會使回傳的回波產生相異的都卜勒效應,透過都卜勒效應(頻率為正值,代表海浪靠近雷達;頻率為負值,代表海浪遠離雷達)便可以知曉波浪與雷達的相對速度與方向。

關於都卜勒效應更詳細且清楚的解釋可參考此影片。

當雷達透過布拉格效應獲得海浪之波長(因雷達波的波長為已知數),又知曉海浪頻率的變化後,將回波所得出之資料輸入電腦計算,便可以得出波浪的波高、波向、週期、速度等相關資料。

左上為布拉格散射之示意圖,左下為海浪前進或後退所產生的都卜勒效應,透過雷達回波的譜線分析 (右圖) 即可判斷海浪、風向、風速、方向等海面訊息。圖/臺灣海洋科技研究中心

而難以預測的海象遇到瘋狗浪更增添了難度,因為瘋狗浪的成因與易發生地點都僅是推測性的預測而非絕對性的預測,專家目前對瘋狗浪的成因仍持續的嘗試理解與推估,但目前中央大學水海所團隊已經透過海洋雷達觀測系統,可以有效的在瘋狗浪抵達的前 20 至 30 分鐘提供預警!

透過分析瞬時的海象變化,更可以有效進行預測,也可較為減少瞬間海象造成的災難,海洋中的觀測系統仍在不停的發展與改進中,在未來,一定會持續的改良與精進海象觀測,加強海上或海邊活動的安全性!

利用臺灣海洋雷達觀測系統 (TOROS) 測得臺灣周遭海象變化。圖/臺灣海洋科技研究中心

資料來源:

  1. 國立中央大學地球科學系
  2. 神出鬼沒的瘋狗浪
  3. 海洋觀測儀器與方法
  4. 利用高頻雷達監測台灣四周海域表層海流
Mia_96
16 篇文章 ・ 21 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師