0

0
0

文字

分享

0
0
0

新物理學研究獎項問世 首屆九位得主出爐

活躍星系核_96
・2012/08/01 ・976字 ・閱讀時間約 2 分鐘 ・SR值 570 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

基礎物理學獎基金會於七月三十一日公布了九位得獎者,他們因研究成果走在物理學領域前端而獲獎,但同樣也引人注目的是,每位得獎人將可獲得三百萬美元的獎金,金額遠遠超過其他類似的世界級獎項。

基礎物理學獎創辦人 Yuri Milner。圖片來源:Getty Images

基礎物理學獎(暫譯,原文為 Fundamental Physics Prize)由 Yuri Milner 所創辦,這位知名的俄國企業家在 1989 年時放棄了自己在研究所的物理學學業,隨後透過投資社群網站 Facebook 和團購網站 Groupon 等科技業大舉獲利。

諾貝爾獎的獎金,一般來說大概落在一百五十萬美元不等(今年則減少至一百二十萬美元),且通常由二至三位得主均分。表彰對於人類精神生活層面做出傑出貢獻的鄧普頓獎(Templeton Prize),其一百七十萬美元左右的獎金,則是世界上授予個人獎金最為豐厚的一個獎項。現在,基礎物理學獎的獎金更高,因研究宇宙膨脹理論(cosmic inflation)而獲獎的麻省理工學院物理學教授 Alan H. Guth 即對此感到驚訝。

不像諾貝爾物理學獎,基礎物理學獎的第二項特色,是可以將獎項頒給想法還未被實驗證實的科學家,創辦人 Milner 表示,有時候新穎的想法需要立即贏得認可,正是因為這些想法能夠拓展我們對於可能性的理解。他認為這次授獎只是個開始,往後傑出的得獎者都會受邀組成選拔委員會,協助選出未來的基礎物理學獎得主。除此之外,還有另一個值得一提的特色,相較於諾貝爾獎不公開評選過程的作法,任何人都可以在線上提名候選人,且評選管道是公開的。

其他得主還有同在美國紐澤西州普林斯頓高等研究院工作的 Nima Arkani-HamedJuan MaldacenaNathan Seiberg 及 Edward Witten,他們研究基本粒子與宇宙作用力之間關係的理論,特別是弦理論;同樣也研究宇宙膨脹的史丹佛大學物理學家 Andrei Linde、印度 Harish-Chandra研究院的弦理論學者 Ashoke Sen、研究量子電腦的加州理工學院物理學教授 Alexei Kitaev,以及法國高等研究院的數學家 Maxim L. Kontsevich,他所提出的抽象數學理論新發現,被證明有助於物理學家揭開弦理論奧秘。

資料來源:

9 Scientists Receive a New Physics Prize—The New York Times [2012-07-31]
Alan Guth wins $3 million Fundamental Physics Prize—MITnews [2012-07-31]
Biggest science prize takes web tycoon from social networks to string theory—theguardian [2012-07-31]

文章難易度
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

2
1

文字

分享

1
2
1
【2004諾貝爾化學獎】蛋白質的分解機器
諾貝爾化學獎譯文_96
・2022/09/12 ・6710字 ・閱讀時間約 13 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自諾貝爾化學獎專題系列,原文為《【2004諾貝爾化學獎】蛋白質的分解機器

  • 譯者/蔡蘊明|台大化學系名譽教授

譯者前言:今年的諾貝爾化學獎又落入了生化學家的口袋,連續兩年頒給生化學者並不常見,我想這應該是反映了現在化學研究的熱門趨勢。今年的諾貝爾化學獎讓我們注意到細胞是如何精妙的去控制它的蛋白質系統,昨日(十月六日)我在中研院生醫所聽了一場 2002 年諾貝爾生理及藥學獎的得主 H. Robert Horvitz 的演講,那是另一個熱門的題目:細胞凋亡,真是一場精采的演講,同樣的我們看到這些蛋白質的另一種運作。前幾日與一位生技系的學生聊到他未來想走的方向,言談之間他似乎認為蛋白質的化學已經熱門了好一陣子了,恐怕熱潮已過。不過從現實來看,在諾大的生命體系中,我們對它的瞭解實在是太少了,由這些蛋白質的研究看來,我覺得蛋白質的化學仍應是方興未艾吧!

後記:  詹健偉是我在 2003 年教過的學生,他原在植微系,後來轉入了生化科技系,從起初對生物系統的興趣加上對化學的熱愛導致他轉入生化科技的領域,然而這些年他逐漸的體認:「只有化學才能完美的解釋生物體系」,現在他已經決定投入“化學生物學”的領域。健偉是個認真的學生,他讀我的翻譯文章極為仔細,更進一步的從一個學生化的背景看出我許多翻譯的謬誤以及不通順之處。約莫半年前碰到他,他主動的提及願意幫我修改,一直到最近才讓我如願。有學生如此,是我的福分,感謝健偉也祝福他!

— 蔡蘊明 謹誌於 2006 年 10 月 9 日

一個人的細胞中含有上百萬種的不同蛋白質,它們具有無數的重要功能:例如以酵素(或稱為酶)的型式存在的化學反應加速者,以荷爾蒙的型式存在的訊息傳導物質,在免疫的防禦上扮演要角以及負責細胞的型態和結構。今年的諾貝爾化學獎得主:席嘉諾佛(Aaron Ciechanover)、赫西柯(Avram Hershko)以及羅斯(Irwin Rose)研究在細胞中如何對一些不需要的蛋白質加上一種稱為泛素(ubiquitin)的多胜肽標籤,藉以調節某些蛋白質的存在,他們的研究在化學知識上有重要的突破。這些被加上標籤的蛋白質,接著會在一個稱為蛋白解體(proteasome)的細胞"垃圾處理機"中迅速的降解。

透過他們發現的這個蛋白質調節系統,這三位學者使得我們能在分子的層次瞭解細胞如何的控制許多重要的生化程序,例如細胞週期、DNA 的修補、基因的轉錄以及新合成之蛋白質的品質管制。有關這種形式之蛋白質凋亡控制的新知識也使得我們能解釋免疫防禦系統如何的運作,這個系統的缺陷可造成包括癌症在內的不同疾病。

被貼上毀滅標籤的蛋白質

分解是否需要能量?

當大部分的注意力和研究都集中在企圖瞭解細胞如何的控制某些蛋白質的合成時(這方面的研究產生了五個諾貝爾獎),與其相反的蛋白質降解則一直被視為是較不重要的。其實有一些簡單的蛋白質降解酶是早就知道的,一個例子就是胰蛋白酶(trypsin),這是一個存在於小腸中,將食物中的蛋白質分解為胺基酸的一種酵素。類似的,有一種稱為溶體(lysosome)的細胞胞器也早就被研究過,它的功能是把由細胞外吸入的蛋白質降解。這些降解程序的共通性在於這些功能不需要能量。

不過早在 1950 年代的實驗就顯示要分解細胞本身所具有的蛋白質是需要能量的,這個現象一直困擾著研究者,這個矛盾也就是今年的諾貝爾化學獎的背景:亦即細胞內蛋白質的分解需要能量,但是其它蛋白質的分解卻不需要額外的能量。解釋這個需要能量的蛋白質分解過程是由 Goldberg 與其研究夥伴在 1977 年踏出了第一步,他們從一種稱為網狀紅血球(reticulocyte)之未成熟的紅血球,製造出一個不含細胞的萃取物,倚賴ATP(ATP = adenosine triphosphate;是一種細胞的能量貨幣)的能量,這種物質可以催化不正常蛋白質的分解。

運用這個萃取物,今年的三位諾貝爾化學獎得主在 1970 年代後期及 1980 年代初,透過一系列劃時代的生化研究,成功的顯示在細胞中的蛋白質分解,是透過一系列一步步的反應,導致要被摧毀的蛋白質被掛上一個稱為泛素(ubiquitin)的多胜肽標籤。這個過程使得細胞可以非常高的專一性分解不需要的蛋白質,而且就是這一個調控的過程需要能量。與可逆的蛋白質修飾例如磷酸化(1992 年的諾貝爾生理醫學獎)不同之處是:被聚泛素化(polyubiquitination)調控的反應,常是不可逆的,因為被掛上標籤的蛋白質最後被摧毀了。大部分的這些工作是在以色列 Haifa 大學的赫西柯以及席嘉諾佛在休假年,於美國費城的 Fox Chase 癌症中心的羅斯博士的實驗室所完成的。

泛素的標籤

這個後來被發現用在需要分解掉的蛋白質上所貼的標籤,早在 1975 年就從小牛胸腺中被分離出來,它是一個由 76 個胺基酸所組成的多肽,該分子被認為參與在白血球的成熟過程中,其後由於這個化學分子在各種不同的組織和生物體中(細菌除外)亦被發現,因此被賦予了泛素(ubiquitin)的名稱(ubique在希臘文中有到處或廣泛的意思)(圖一)。

(圖一)泛素:一個共通的多胜肽代表"死亡之吻"

發現由泛素所媒介的蛋白質分解

在赫西柯取得博士學位之後,研究了一陣子肝細胞中倚賴能量的蛋白質分解,不過在 1977 年決定改為研究上述的網狀紅血球萃取物,這個萃取物含有大量的血紅素,嚴重的影響實驗,在企圖利用層析法來去除血紅素時,席嘉諾佛以及赫西柯發現這個萃取物可被分成兩個部分,二者個別都沒有生化活性,但是他們發現一旦二者混合在一起,那個倚賴 ATP 的蛋白質分解活性就恢復了。在 1978 年他們發表了其中一個部分中的具活性物質,是一個對熱穩定的多肽,分子量只有 9000,他們稱之為 APF-1,這個物質後來證實為泛素。

席嘉諾佛,赫西柯,與羅斯在 1980 年發表了兩份決定性的突破工作,在這之前 APF-1 的功能是完全不清楚的。這頭一份報告顯示 APF-1 是以共價鍵(就是一種很穩定的化學鍵結)與萃取物中的各種不同蛋白質結合。在第二部份的報告更進一步的顯示有許多個 APF-1 鍵結在同一個目標蛋白上,此一現象被稱為聚泛素化(polyubiquitination)。我們現在知道這個將目標蛋白質多次泛素化的步驟,是一個導致蛋白質在蛋白解體(proteasome)中降解的啟動信號;也就是這個聚泛素化反應,在蛋白質貼上降解的標籤,或可稱其為"死亡之吻"。

就這麼一擊,這些完全未預期的發現,改變了其後的研究方向:現在就可以集中力量開始鑑定那些將泛素接上蛋白質標靶的酵素系統。由於泛素普遍的存在於各種不同的組織和生物體中,大家很快的體認到,由泛素所媒介的蛋白質分解對細胞一定是很普遍而重要的。研究者更進一步的推測,那個倚賴 ATP 的能量需求,可能是為了讓細胞控制這個程序的專一性。

這個研究領域就此大開,而在 1981 到 1983 年間,席嘉諾佛,赫西柯,羅斯與他們的博士後研究員及研究生發展了一套“多重步驟泛素標籤化假說”,這個假說是基於三個新發現之酵素的活性,他們稱這三個酵素為 E1、E2與E3(圖二)。我們現在知道一個尋常的哺乳類細胞含有一個或數個不同的 E1 酵素,大約幾十個 E2 酵素,以及幾百個不同的 E3 酵素,就是這個 E3 酵素的專一性,決定了在細胞中要為哪些蛋白質貼上標籤,然後在垃圾處理機中摧毀。

到這個節骨眼為止,所有的研究都是在沒有細胞的系統中進行的,為了也能夠研究泛素所媒介的蛋白質降解之生理功能,赫西柯與其協同工作人員發展了一種免疫化學方法:用數種放射性胺基酸,以瞬間脈衝的方式來培養細胞,可標定細胞內某一個瞬間所合成的蛋白質。但是泛素中剛好沒有這幾種胺基酸,所以在這瞬間合成的泛素並未被放射性標記。利用泛素的抗體,可以將 "泛素-蛋白質"複合體自該細胞中分離出來,而其中的蛋白質的確具有放射性標記。實驗結果顯示,細胞中也確實以泛素系統來分解有缺陷的蛋白。我們現在知道細胞中大約 30% 的新合成蛋白質都會被垃圾處理機分解,因為它們沒有通過細胞的嚴格品質管制。

(圖二)泛素所媒介的蛋白質降解
  1. E1 酵素活化泛素分子,這個步驟需要 ATP 形式的能量。
  2. 泛素分子被轉移到另一個不同的酵素 E2。
  3. E3 酵素可辨認需要摧毀的目標蛋白質,"E2-泛素"複合物和"E3酵素"結合的位置,非常接近目標蛋白質。這個非常接近的距離,使得泛素標籤足以被轉移到目標蛋白上。
  4. E3 酵素釋放出具有泛素標記的蛋白質。
  5. 最後一步重複數次直到一個由泛素分子構成的的短鏈接在目標蛋白質上。
  6. 這個泛素的短鏈在垃圾處理機的開口處被辨識後,泛素標籤脫落而蛋白質被允許進入並被切成碎片。

蛋白解體-細胞的垃圾處理機

什麼是蛋白解體?一個人類細胞含有約 30,000 個蛋白解體,這個桶狀的結構體可以基本上將所有的蛋白質分解為七到九個胺基酸長短的胜肽,蛋白解體的活性表面是位於桶的內璧,也就是與細胞的其它部份是分隔開來的,唯一能進入蛋白解體的桶中活性表面的方式是必須透過"鎖",鎖能夠辨認接有多個泛素構成的短鏈之蛋白質,藉由 ATP 的能量將蛋白質變性(denature),並在泛素構成的短鏈移除後允許蛋白質進入,並將之降解,降解出來的胜肽由蛋白解體的另外一端釋放出來。因此蛋白解體本身並不能挑選蛋白質,決定哪一些蛋白質需要貼上銷毀的標籤,是 E3 酵素的工作。(圖三)

(圖三)細胞的垃圾處理機。黑點代表具有蛋白質分解活性的表面。

最近的研究

當貼上泛素標籤的蛋白質分解過程背後的生化機制在 1983 年被暴露後,它在生理學上的重要性尚未能完全掌握,雖然知道它在銷毀細胞內具有缺陷的蛋白質上是非常重要的,但是再進一步的,就需要一個突變的細胞來研究泛素的系統,藉著仔細的研究一個突變的細胞與正常的細胞在不同的生長條件下有何不同,希望知道細胞中有哪些反應是與泛素的系統有關,這才能得到更清晰的概念。

一個突變的老鼠細胞在 1980 年由一個東京的研究小組分離出來,他們的突變老鼠細胞含有一個因為突變之故而對溫度非常敏感的蛋白質。在較低溫度時它能發揮應有的功能,但是在高溫時則否,因此在高溫時培養的細胞會停止生長。此外,在高溫時它們顯示其 DNA 的合成會有缺陷以及一些其它的錯誤功能。一群在波士頓的研究人員很快的發現這個突變鼠細胞中對熱敏感的蛋白質是泛素活化酵素 E1,顯然泛素的活化對細胞的運作及複製是不可或缺的,正常蛋白質分解控管不僅對細胞中不正確蛋白質的銷毀很重要,也可能參與了細胞週期、DNA 的複製以及染色體結構的控管。

從 1980 年代末期開始,研究者鑑定出許多生理上很重要的基質是泛素所媒介的蛋白質分解機制中的標靶,在此我們僅提幾個最重要的為例子。

避免植物的自我授粉

大部份的植物是兩性或雌雄同株的,自我授粉將會導致基因多樣性的逐漸喪失,長期而言將造成該物種的完全絕滅,因此為了避免這個情形,植物利用泛素所媒介的蛋白質分解機制來排除"自身"的花粉,雖然完整的機制尚未明朗,但是已知 E3 酵素參與了運作,而且當加入蛋白解體的抑制劑時,排除自身花粉的能力就被削弱。

(圖四)細胞週期中控制染色體分離的機制:剪刀代表分解蛋白質的酵素而綁住剪刀的繩子代表它的抑制劑,APC 將這條繩子貼上標籤造成繩子的分解,剪刀就會釋放出來,接著將那條綁在染色體周圍的繩子切斷,最後造成染色體分離。

細胞週期的控制

當一個細胞要複製自己的時候會有許多的化學反應參與其中,在人體中的 DNA 有六十億個鹼基對必須複製,它們聚集成必須拷貝的 23 對染色體。普通的細胞分裂(也就是有絲分裂),形成生殖細胞(減數分裂),都與今年的諾貝爾化學獎的研究領域有許多交集。在此運作的 E3 酵素稱為"有絲分裂後期促進複合體"(anaphase-promoting complex簡稱 APC),其功能在檢查細胞是否離開了有絲分裂期,這個酵素複合體也被發現在有絲分裂及減數分裂過程中,對染色體的分離扮演了重要的角色。有一個不同的蛋白質複合體,它的功能就好像是一條綁在染色體周圍的繩子,將一對染色體綁在一起(圖四)。在一個特定的訊號出現後,APC 會在一個"降解蛋白質酵素"的抑制劑上貼上標籤,因此這個抑制劑就會被帶到蛋白解體中分解掉,而前述的那個降解蛋白質的酵素就會被釋放出來,在經過活化後將那條綁在染色體周圍的繩子切斷,一但繩子脫落,那一對染色體就會分離。在減數分裂時,錯誤的染色體分裂,是造成孕婦自然流產最常見的原因;一條多出來的人類第 21 號染色體會導致唐氏症;大部份的惡性腫瘤會具有數目改變的染色體,其原因也是由於有絲分裂時錯誤的染色體分裂。

DNA 的修補,癌症以及細胞凋亡

蛋白質 p53 被封為"基因體的守護神",它也是一個腫瘤抑制基因(tumor-suppressor gene),這個意思是只要細胞能製造 p53 就可以阻擋癌症的發生。可以非常確定的,在所有人類癌症中有至少一半的蛋白質是突變的。在一個正常細胞中,蛋白質 p53 一直不斷的被製造和分解,因此其數量是很低的,而它的分解是透過泛素標籤化過程以及負責與 p53 形成複合體的相關 E3 酵素來調控;當 DNA 受到損傷後,蛋白質 p53 會被磷酸化而無法與 E3 酵素結合,p53 的分解無法進行,因此細胞內的 p53 數量迅速增高。蛋白質 p53 的功能是作為一個轉錄因子(transcription factor),換言之就是一個調控某些基因表現的蛋白質。蛋白質 p53 會與控制 DNA 修補以及細胞凋亡的基因結合,並調控該基因,當它的數量升高時會影響細胞週期藉以保留時間給 DNA 修補的運作,倘若這個 DNA 的損傷過於嚴重,計劃性細胞凋亡將會啟動而導致細胞的"自殺"。

人類乳突病毒的感染與子宮頸癌的發生有極大的關聯性,這個病毒避開了 p53 所控制的關卡,它的方法是透過它的蛋白質去活化並改變某一個 E3 酵素(稱為 E6-AP)的辨識行為,E6-AP 被騙去將蛋白質 p53 貼上死亡的標籤而造成 p53 的消失,這個後果是被感染的細胞無法正常的修補其 DNA 所受到的傷害或者引起計劃性細胞凋亡,DNA 突變的數目增加最後終於導致癌症的發生。

免疫與發炎反應

有某一個轉錄因子調控著細胞中許多與免疫防禦及發炎反應有關的重要基因,這個蛋白質,亦即這個轉錄因子,在細胞質中是與一個抑制蛋白質結合在一起的,在這個結合的狀態下,此一轉錄因子是沒有活性的。當細胞暴露到病毒時或有其它的訊號物質出現時,這個抑制蛋白質就會被磷酸化,接著被貼上銷毀的標籤而送到蛋白解體中分解掉,此時被釋放出來的轉錄因子被運送到細胞核中,在那裡它與某些特定的基因結合,進而啟動這些基因的表現。

免疫防禦系統中,被病毒感染的細胞,會利用泛素-蛋白解體系統,將病毒蛋白質降解到適當大小的多肽,這些多肽會被呈獻到細胞的表面。T 淋巴細胞會辨識這些多肽然後攻擊這些細胞,這是我們的免疫系統對抗病毒感染的一項重要防禦方式。

纖維囊腫症(cystic fibrosis)

一個稱為纖維囊腫症的遺傳疾病,簡稱 CF,是由一種不具功能的細胞膜氯離子通道(稱為 CFTR;纖維囊腫跨膜通道傳導調節蛋白)所造成。大部份的纖維囊腫病患都具有一個相同的基因損傷,也就是一個在 CFTR 蛋白質上缺少了一個苯丙胺酸的胺基酸。這個突變導致了這個蛋白質的錯誤摺疊結構,使得該錯誤摺疊蛋白被保留在細胞的蛋白質品管系統中,這個品管系統要確實的將此一錯誤摺疊的蛋白質透過泛素-蛋白解體系統銷毀,而不能將之傳送到細胞膜上,一個沒有正常氯離子通道的細胞將無法透過細胞膜傳送氯離子,這就影響到肺部以及一些其它組織的分泌系統,造成肺黏膜液的增加而破壞其功能,更大幅的增加其受到感染的危險性。

這個泛素系統已經成為一個很有趣的研究領域,可用來發展治療各種疾病的藥物,在此的工作方向可以利用泛素所媒介的蛋白質分解機制去避免某些特定蛋白質的分解,也可以設計成讓這個系統將某一個不想要的蛋白質清除。已經有一個在進行臨床實驗的藥,那是一個稱為 Velcade(PS341)的蛋白解體抑制劑,可以用來醫治多重性骨髓瘤(multiple myeloma),這是一種會影響體內製造抗原的細胞的一種癌症。

今年的得獎者從分子的基礎上解釋了一個對高等細胞而言極為重要的蛋白質控制系統,由泛素所媒介的蛋白質分解機制所控制的細胞功能,現在一直不斷的有新的發現,而這方面的研究也在世界各地無數的實驗室中進行著。

參考資料

這份文章是譯自諾貝爾獎委員會公佈給大眾的閱讀資料:

http://nobelprize.org/chemistry/laureates/2004/public.html

有意進一步的瞭解就得詳讀以下資訊:

http://nobelprize.org/chemistry/laureates/2004/adv.html

原文附有一個很精采的動畫,對這個蛋白質控制系統有畫龍點睛之妙,推薦各位看看:

http://nobelprize.org/chemistry/laureates/2004/animation.html

所有討論 1
諾貝爾化學獎譯文_96
15 篇文章 ・ 20 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

9
2

文字

分享

0
9
2
除了發現量子力學,普朗克還有第二個重大發現是什麼?
賴昭正_96
・2022/07/16 ・4593字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

(瓦特斯頓)論文的歷史說明了:… 價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。

-瑞利爵士(Lord Rayleigh)1904年諾貝爾物理獎得主

在「抱歉了愛因斯坦,但我真的沒辦法頒獎給那個酷理論—為何相對論與諾貝爾獎擦身而過?」裡,筆者提到了 19 世紀末的物理學家曾經非常自滿地認為物理學上的基本問題都已經解決了,剩下的只是細節問題。例如 1874 年,量子師祖普朗克(Max Planck)的指導教授久利(Philipp von Jolly)就告訴他說:「在這個(物理)領域,幾乎所有的東西都已經被發現了,剩下的就是填補一些不重要的漏洞。」普朗克回答說他不想發現新的東西,只想「了解」這個領域的已知基礎。

現在我們當然知道事與願違,19 世紀末的物理不但未靜如止水,反而是刮起大風大浪的預兆。例如誰想到就在那個世紀結束前的 12 月,普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念,成了發現量子力學的第一大功臣(參見「黑體輻射光譜與量子革命」),改變了整個物理學家對客觀世界的看法。

普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念。圖/Wikipedia

而後在 20 世紀才開始不久的 1905 年,瑞士專利局最低等級的審查員愛因斯坦(Albert Einstein)更不知道從何處突然冒出一篇題爲「關於運動物體的電動力學(On the Electrodynamics of Moving Bodies)」論文,吹起了 20 世紀的第一個物理革命號角,徹底改變了統領物理界 300 多年的牛頓時空觀念。可是良馬⎯愛因斯坦這一篇論文—如果沒有遇到伯樂,它會是一匹良駒嗎?如果不會,那誰是那一篇論文的伯樂呢?

誰會是愛因斯坦的伯樂?

這篇題為「關於運動物體的電動力學」的論文事實上是很奇怪。這標題通常應是討論磁性或介電物質在電磁場中的運動特性,但愛因斯坦根本沒有分析這個主題,而是花了很多篇幅在前半部分討論:許多物理學家都認為理所當然之某些基本物理概念的性質。而論文中唯一明確討論之法拉第的電磁感應實驗,則是用當時的理論就可以充分解釋、大多數物理學家認為已不甚重要性的題目;最後建議丟棄一些廣泛使用的概念(例如「同時」及以太等)。更不尋常的是:作者是一位名不見經傳、任職於專利局的小職員,其撰寫的風格和格式都非正統,沒有引用任何當時的文獻!

愛因斯坦曾希望他當年在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;因此在論文出版後,他妹妹後來回憶說:

「(愛因斯坦)曾努力翻閱《物理年鑑》,希望能找到對他理論的回應。……但他非常失望,出版之後(的反應)是冰冷的沉默。」

愛因斯坦寫出「關於運動物體的電動力學」受到普朗克的讚賞,圖為 1929 年愛因斯坦獲得普郎克獎(Planck medal)時,與普朗克的合影。圖/AIP

在無奈的失望中,愛因斯坦突然於 1906 年 3 月收到了第一個物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克!普朗克給愛因斯坦寫了一封充滿熱情洋溢的信,謂其相對論論文「立即引起了我的熱烈關注」,並將到專利局所在地伯爾尼(Bern)拜訪他!愛因斯坦當然很興奮,立即寫信告訴他以前的家教學生、合創「奧林匹亞學院(Olympia Academy)」、剛剛搬離伯爾尼的好友索洛文(Maurice Solovine):

「我的論文倍受讚賞,並引起了進一步的研究。普朗克教授最近寫信告知我此事。」

普朗克是如何成為愛因斯坦的伯樂

普朗克當時擔任《物理年鑑》編輯,在接觸到愛因斯坦那篇關於空間、時間、和光速的想法前,他事實上已經相當明白:當涉及到由不同觀察者測量的光速時,古典物理學存在一個令人討厭的問題,即測不出地球在絕對靜止之以太中的速度,迫使當時一些名物理學家到處貼補漏洞。因此當愛因斯坦大喊(開玩笑的,當時他還是一位無名小卒,怎麼敢大喊):不要再費心了,讓我們假設(在任何慣性參考系中測量的)光速為一定值,來取代「標尺和時鐘不會永遠誤導我們」之錯誤概念時,普朗克立舉雙手贊成。在其 1949 年的自傳裡,普朗克謂:

「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。」

在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,因此德國在許多方面對愛因斯坦之相對論的反應是獨一無二的;例如 1905-1911 年期間有關相對論的論文,沒有其它國家在數量上能夠與德國相媲美。在法國、英國和美國的回應中,雖然也有熱情的支持,但只有在德國才有人說「我理解愛因斯坦的研究」。但當時的「不敢苟同」聲事實上也不少;例如德國物理學家索末菲 (Arnold Sommerfeld)一大早就認為愛因斯坦的理論方法有某種猶太色彩(後來被利用成為反猶太主義者的工具),對秩序和絕對的概念缺乏應有的尊重,而且似乎沒有堅實的基礎。1902 年諾貝爾物理獎得主、荷蘭理論物理大師洛倫茲(Hendrik Lorentz)在 1907 年更寫道:

「愛因斯坦的論文雖然出色,但在我看來,這種難以理解和無法形象化的教條裡仍然存在一些幾乎不健康的東西。一位英國人幾乎不會給我們這種理論。」

普朗克顯然是第一位認識到愛因斯坦在相對論方面開創性工作的主要人物,也是愛因斯坦在科學界最忠誠的擁護者。兩人在個性上雖然非常不相似(前者非常保守,後者不理傳統),但也成為最親密的朋友。普朗克於 1906 年公開為愛因斯坦理論辯護,反對一波又一波的懷疑論者,寫信給愛因斯坦說「(我們)必須團結一致」。他將愛因斯坦的理論描述為洛倫茲理論的「延伸」(generalization),並將「洛倫茲-愛因斯坦理論」命名為現在大家所接受的「相對論」。儘管如此,普朗克還是不接受狹義相對論之無可避免的「不需要以太」結論。

普朗克不接受狹義相對論之無可避免的「不需要以太」結論。圖/wikipedia

普朗克是第一位以愛因斯坦理論為基礎來發展的物理學家。他在 1906 年春天發表的一篇文章中,證明愛因斯坦的相對論符合物理學基礎之「最小作用原理」(least action principle):任何物體(包括光)在兩點之間的移動都應該遵循最簡單的路徑,開展了如何在這個新的彈性時空中正確處理物體的動力學。

 普朗克並未履約到伯爾尼拜訪愛因斯坦,只派比他更先獲得諾貝爾獎(1914 年)的助手勞鴻(Max von Laue)於 1906 年夏天去拜訪本以為應在伯爾尼大學任教的愛因斯坦。勞鴻與愛因斯坦兩人相談甚歡,不但成為終生好友,前者在此後四年內還寫了八篇相對論論文,包括嚴格地證明了 E=mc2。愛因斯坦謂勞鴻 1911 年所寫的第一本相對論教科書「是一個小傑作,其中的一些內容是他的知識產權」,並從中學習到了一些他後來創建廣義相對論所需的張量(tensor)數學。

瓦特斯頓發展的氣體動力學

瓦特斯頓(John Waterston,1811-1883)是蘇格蘭物理學家,在印度工作期間發展了氣體動力學理論,謂氣體分子與容器表面的碰撞導致我們感受到氣體壓力,正確地推導出理想氣體定律。他於 1845 年投稿到英國皇家學會,但審稿人認為那論文「不過是胡說八道」而被拒絕出版;現在的物理學家都認為馬克斯威(James Maxwell)為氣體動力學(kinetic theory of gases)的創始者。

John James Waterston。圖/Wikipedia

瓦特斯頓去世幾年後,瑞利爵士(Lord Rayleigh,1904 年諾貝爾獎得主,當時的皇家學會秘書)從皇家學會的檔案中挖掘出那篇論文,將它重新發表於1892年的《皇家學會哲學彙刊》上。瑞利爵士警告說:。

(瓦特斯頓)論文的歷史說明了:因為科學界不願在其印刷品中記錄價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。也許有人可能會更進一步(建議)說,一位相信自己有能力做大事的年輕作家,應該在開始更高的飛行之前,先通過範圍有限、且價值容易判斷的工作來獲得科學界的良好認可。

相信這類事件在物理學上是時常發生的。在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者就提到了 1924 年 6 月 4 日,一位任教於東巴基斯坦的講師波思(Satyendra Bose)將一篇被英國名《哲學雜誌》(The Philosophical Magazine)退稿的論文,轉寄給愛因斯坦,並附函謂「……如果你認為它值得發表,可否請您將它譯出(成德文),投稿到《物理學雜誌》(Zeitschrift für Physik)… 」。波思毫無疑問地是一位「不知名的作者」,那篇文章也毫無疑問地是「價值不確定,高度的投機性」!還好愛因斯坦眼光獨特,否則不但波思可能淪為另一個瓦特斯頓,量子統計力學是否會那麼早就出現就不得而知了。

結論

有歷史學家說普朗克在近代物理上有兩大貢獻,其一是發現量子力學,另外一個則是發現愛因斯坦!愛因斯坦發表那篇「價值不確定」之狹義相對論論文時也是一位「不知名的作者」,因此如果沒有普朗克慧眼識英雄,幫他推銷與辯護,愛因斯坦或許也可能淪為另一個瓦特斯頓,那篇論文可能於 1908 年在閔可夫斯基(Hermann Minkowski)的時空(spacetime)中消失[註]

有了理論物理界權威普朗克教授做後盾,愛因斯坦平步青雲、離開專利局、進入學府、及成名應只是遲早的事情。說來有趣,在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者談到了如果沒有愛因斯坦興風作浪,普朗克是否會成為創建近代物理的第一革命先鋒(量子力學);而在這裡我們卻在懷疑如果沒有普朗克拔刀相助,愛因斯坦是否會成為創建近代物理的第二革命先鋒(相對論)。

至於愛因斯坦是否真是首位發現狹義相對論的物理學家,則請待下回分解。

註解

事實上普朗克及愛因斯坦本人完全低估了該篇論文的創見性,認為它只是洛倫茲理論的「延伸」而已。愛因斯坦的數學老師閔可夫斯基於1908年將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」的嶄新觀念,奠定了相對論的數學基礎,成為現在物理學家學習、了解、與討論愛因斯坦相對論主要(唯一)工具。

延伸閱讀

賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
1

文字

分享

0
5
1
《沙丘》的沙子是流體還是固體?——「顆粒體」的運動原理
研之有物│中央研究院_96
・2022/06/18 ・6628字 ・閱讀時間約 13 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/黃品維、簡克志
  • 美術設計/蔡宛潔

顆粒體如何流動?

流沙、土石流、穀倉的米……這些顆粒體,究竟是如何流動的?過去,科學界對於「顆粒流」的研究起步非常晚,也一直缺乏統整型的理論。中央研究院「研之有物」專訪院內物理研究所蔡日強副研究員,他長年研究顆粒體的運動行為,實驗室透過自創的顆粒軟球實驗,試圖找到全新的方法來描述顆粒流,並為固體與流體兩個歷史悠久的學術領域,搭建出一個溝通的橋梁!

從流沙到洗米:隨處可見的「顆粒體」

「顆粒體的流動」(Granular flows)聽起來或許有點生硬,但它其實是我們生活中常見的現象,像是在廚房裡洗米、攪拌咖啡豆、或是在工地攪動砂石,都是顆粒流的一種。而如果以人類文明的發展來說,從古時候建造金字塔、到現在火星探測器的著陸,也都有顆粒流的現象參與其中。

然而,即使顆粒流與我們息息相關,科學家對它的了解卻少之有少。究竟,顆粒體是怎麼流動的?有沒有一個方程式,可以描述顆粒流的行為?中研院物理所的蔡日強副研究員,長年進行顆粒體相關研究,這一次,他希望透過全新的實驗,解開顆粒體的流動之謎!

要如何描述顆粒體的流動呢?是固體?還是流體?圖/iStock

萌芽階段的顆粒流研究

不管是固態力學或是流體力學領域,都是「百年老店」,已經累積了上百年的歷史。相較之下,顆粒流的研究非常年輕,僅僅是最近幾十年的事情而已。造成這樣的原因,除了顆粒流本身的複雜性之外,也是因為它的定位,一直處於「三不管地帶」。

顆粒流很特別,它像固體一樣,能夠堆疊、擠壓,可是又會有流動的行為,若只用固體或流體的角度切入,都很難完整描述這樣的現象。然而在學術圈,固體和流體兩大流派,經過上百年的發展,都有各自根深柢固的作法、解讀現象的方式,彼此之間存在著很大的鴻溝。

「在學術界,Solid(固體)的人講 Solid 的語言,Fluid(流體)的人講 Fluid 的語言,兩邊的溝通其實非常少!」蔡日強笑著說「我以前參加過一個應用力學大會,大會裡的會議名稱,直接分成兩種開頭,一種是 S、另一種是 F,擺明了他們討論事情的角度,不是固體就是流體。」

對顆粒流來說,這樣的二分法顯得非常尷尬。蔡日強認為,如果可以從固體與流體領域,各自吸取一些精髓,或許能夠連接兩個學派,用不一樣的角度研究顆粒流!

如何研究「顆粒體的流動」?

為了瞭解顆粒體如何流動,蔡日強設計了一套獨特的實驗方法,可以分為「顆粒體」與「容器」兩個部分。

在「顆粒體」方面,蔡日強採用醫用材料(PDMS),製作出許多顆粒軟球,硬度接近橡皮擦、大小約一公分。為什麼會採用「軟」球來代表顆粒體呢?

過去,在物理學家的理論中,常常會把顆粒體視為「剛體」。然而,剛體的假設在理論上不僅無法呈現顆粒體被壓縮的情況;而且實驗上,也很容易遇到麻煩!

如果採用剛硬的顆粒體做實驗,在緊密排列時,很容易「卡死」,不只完全動不了,也很可能讓珍貴儀器損壞。為了讓顆粒體可以緊密排列,又不會完全卡死讓儀器動不了,可以擠壓、變形的顆粒軟球,就成為了最好的實驗材質。

影片為實驗室展示用,實際操作時液體會淹沒顆粒軟球,保持液體折射率和軟球一致,以便用光學攝影機記錄內部軟球的運動情況[註1]
資料來源/研之有物
上圖為蔡日強展示顆粒軟球與填充液體折射率一致的情況。圖/研之有物

至於在「容器」方面,蔡日強在裡面設計了齒輪狀的錐形圓盤:上方的錐形圓盤連接馬達,可以不斷旋轉;齒輪狀可以咬住顆粒軟球,帶動容器內的顆粒軟球一起轉動。

設計成錐形的用意,則是可以讓容器內的顆粒體,不論在什麼位置,切變率(shear rate)都可以維持一致。簡單來說,錐形圓盤試圖讓讓整體流動盡可能「均勻」,讓相鄰顆粒之間的速度不至於落差太大[註2]

齒輪狀的錐形圓盤,為了讓軟球盡量保持一致的切變率。圖/研之有物

每一次的實驗,錐形圓盤都會進行定速轉動(固定角速度,Ω),施以所有顆粒軟球固定的切變率。同時,研究團隊也會記錄,在馬達固定轉速時,系統需要多大的轉矩來對抗馬達。但初步實驗即出現了非常匪夷所思的現象!

匪夷所思的實驗結果

顆粒軟球實驗的示意圖與記錄,不同顏色的曲線記錄了顆粒軟球在不同轉速下的轉矩變化。圖/研之有物(資料來源|蔡日強)

從上圖的實驗數據顯示,在低轉速時(Ω = 0.0001 rps),系統產生的轉矩最高;在高轉速時(Ω = 0.05 rps),產生的轉矩反而偏低。

這是什麼意思呢?你可以想像你在攪拌一碗綠豆,當你攪得越慢,遇到的抵抗卻越大;攪得越快,遇到的抵抗反而越小,聽起來是不是有點不合常理?

更奇怪的是,在兩種轉速之間,也就是中等轉速(Ω = 0.005 rps)的時候,轉矩出現了不規則劇烈起伏。從圖中的藍線可以看到,轉矩一次又一次的爬升、跌落、再爬升、再跌落,就像小型地震一樣,出現了大規模的「集體崩落」!

從鏡頭中看崩落現象

團隊在實驗時同步攝影,儀器每轉一定的角度(比如:每萬分之一圈),就將顆粒流的剖面擷取成影像。

實驗時容器內部剖面的圓球運動情況,顆粒軟球有加螢光染料顯影。資料來源/蔡日強

接著,將相片中每一格像素轉為對應數值,分別與上一時刻的照片相減,來得出顆粒體與上一時刻間的「差分影像」。

差分影像(State α):高轉速,承受轉矩小。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強
差分影像(State T):中轉速,轉矩劇烈起伏,有集體崩落現象。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強
差分影像(State β):低轉速,承受轉矩大。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強

藉由這些時變圖,我們得以更明確地判讀顆粒體的運動方式,了解顆粒軟球位移的方向、快慢、範圍。從影像中可以看到,相較於高轉速與低轉速,在中等轉速時,確實出現了大規模顆粒球同時位移的現象,綜合以上的實驗數據和影像,團隊總結了幾個問題:

  1. 一般而言,流體在速度越快的時候,阻力會越大。然而在這次的實驗中,轉速越快、轉矩反而變小,跟過往認知不一樣。
  2. 中等轉速時,為何會出現集體崩落的現象?
  3. 有沒有什麼指標,可以預判集體崩落的出現?

這些問題,讓團隊當時感到十分頭痛,蔡日強回憶「剛開始我也覺得怪怪的,不過我們常說,如果你發現一件比較奇怪的事情,那只有兩種可能:一種是你弄錯了,另一種是真的有個新發現了!」

摩擦係數不是常數?

那麼,在顆粒流切變率加快的同時,究竟有什麼物理性質跟著改變了?

為了解決這些疑惑,團隊進行了許多獨立實驗。其中一個關鍵的實驗,就是量測顆粒軟球材質的「摩擦力」。他們採用同樣是 PDMS 材質的半圓柱棒,兩兩接觸並以不同切面速度(U)拖行,觀察過程中摩擦力的變化。

橫軸是拖行速度,縱軸是磨擦係數(摩擦力/正向力)。圖/研之有物(資料來源|蔡日強)

結果發現,當拖行速度較慢的時候,摩擦係數大約保持在定值,基本上就跟大家過往的認知一樣。但有趣的是,當速度超過一個臨界速度(VC)之後,摩擦係數卻像是坐溜滑梯一樣開始下降,換言之,顆粒軟球的表面突然「變滑了」。

從這個實驗可以確定,摩擦係數並非定值,而是會隨著速度增加而改變的數值。其實,「摩擦係數不是常數」的概念,並非什麼驚天動地的新發現,但過去許多顆粒流的研究,卻忽略了這個基本現象,只把摩擦力當成一般常數看待。

「摩擦係數不是常數」並非新觀念,但大家似乎都忘記這件事了。

而當我們把這個概念,重新應用在顆粒流實驗時,那些匪夷所思的現象,突然都有了合理的解釋!根據團隊的推測,當錐形圓盤轉速加快,快到一定程度的時候,有些顆粒軟球之間的速度,可能已經超過了 VC,導致顆粒軟球摩擦係數下降,才會讓量到的轉矩降低。而「集體崩落」的發生也可能是如此。

崩落現象的風向球:「slipperiness」

有沒有可能推估,顆粒流系統在受力之後,到底會偏向固體?流體?或是發生崩落現象呢?

為此,團隊創造了一個無因次量(不帶物理單位的參數),姑且稱為「slipperiness」,希望可以做為顆粒流行為的「預測指標」。

S 代表 slipperiness,定義為顆粒直徑(d)乘上切變率,再除以臨界速度(VC)。圖/研之有物

slipperiness 可以大略解讀成系統「平均而言有多滑」,代表了顆粒之間相對速度與臨界速度 VC 的大小關係,以及摩擦係數減損的程度。

換言之,如果 slipperiness 遠大於 1 ,代表大部分顆粒體之間的速度大於 VC,摩擦係數近乎消失,難以構成橫向的受力,呈現幾乎「自由」的滑動,在這種情況下,顆粒體之間的液體成為阻力的主角,顆粒體的行為會比較偏向「流體」。

反之,如果 slipperiness 遠小於 1,顆粒體之間相對滑動即使有,速度也都不高,這種情況下摩擦係數接近定值,顆粒體之間可以很容易「消化」所有方向的力,扮演好整個系統承力的主角,顆粒體的行為會比較偏向「固體」。

然而,如果 slipperiness 剛好「不大不小」,代表這兩種極端情形有可能混搭,以局部或整體的方式交錯產生。最戲劇化的事件就會是前述的「集體崩落」,更正式的名稱可叫做「間歇流」。這危險區間的確切範圍,則有待更多細節來決定。

但有了 slipperiness ,蔡日強團隊至少搭出了第一座「橋梁」,連結過去難以相容的兩種觀點來看待顆粒流:一端是摩擦力完全沒打折,可視為「固體」(solid);另外一端,則是顆粒間摩擦力喪失殆盡,已經「完全液化」,可視為「流體」(fluid)。

然而,顆粒流的兩個極端之間其實有相當的過渡地帶,並不在原來習以為常的學術傳統裡。

雖然已發表的實驗還是非常簡化的版本,但蔡日強表示希望能透過論文提醒大家「摩擦力會改變」這件事,也希望拋磚引玉,「讓固體跟流體兩個學術社群,能夠有更多的對話」。

研究的下一步

現階段,團隊正著手改良實驗儀器並設計更多延伸實驗。舉例來說,如果顆粒軟球不一樣大,會發生什麼事?如果顆粒軟球不是圓球,行為會如何改變?如果軟球之間開始壓得不夠緊密的時候,「間歇流」的現象是否消失?這些問題,都是研究團隊接下來想了解的。

藥丸形狀的顆粒也許是團隊下一階段的研究對象之一。圖/研之有物

團隊也正積極透過電腦模擬,研究顆粒體在「無重力、無液體,僅考慮接觸力」的理想環境下,會有什麼樣的流動行為。

蔡日強說道「在實體實驗中,我們只有六個感測器可以推算顆粒流系統的受力反應,但在電腦模擬實驗中,等於有上千個感測器可以蒐集數據,真的是太棒了!」每一顆小球的受力、接觸、旋轉、位移等,在模擬中都看得一清二楚,讓團隊有機會作進一步的推論。

此為電腦模擬在中等轉速下的顆粒流變化。顆粒球之間的彈性能以顏色長棒標示,愈偏紅色那端、彈性能愈大、球和球之間愈緊;愈偏藍色那端、彈性能愈小、球和球之間愈鬆,顏色間的能量級距高達 10 的數次方 。影片中可以看到顆粒球發生集體崩落現象的「瞬間」,原本有很多紅橘色長棒,崩落之後幾乎都變成藍或綠,但長棒的數量只有些微增加,顯示彈性能隨著崩落事件大量釋放。資料來源/蔡日強

下圖是團隊正在統整的「三態圖」,顆粒流有三大區塊,分別是「固態」、「液態」,以及下方的「氣態(懸浮態)」。在緊壓(高密度、高壓力)的狀況下,固態和液態兩極端之間呈現一條「危險走廊」,可看到此案例在 slipperiness 介於 0.001 到 1 之間,發生集體崩落的現象。

「顆粒體三態」的示意圖,縱軸為每顆球「接觸多少鄰居」的平均值,橫軸為 slipperiness。接觸鄰居愈多,表示顆粒之間愈密合。反之,若接觸鄰居低於 2,就很難維持力學結構了。介於固態(紅)和液態(綠)兩個極端之間的過渡帶(橘),正是前述「集體崩落」現象發生的地方,也就是「間歇流」!圖/研之有物(資料來源/蔡日強)

不久之前,蔡日強也開始翻閱地震相關的書籍,想要了解顆粒流「集體崩落」的現象,與真正的地震和土石流,是否有可以互相參照的可能性?蔡日強的期待是讓「顆粒流研究」成為物理學家走入現實世界領域的另一個起點。

「我們離真正的戰場還很遠」,蔡日強笑著說:「但這一切,才正要開始!」

蔡日強(左1)與研究團隊嘗試用新的方式描述顆粒流行為,並為固體與流體兩個歷史悠久的學術領域,搭建出溝通的橋樑。圖/研之有物

註解

  1. 液體折射率和軟球一致是為了讓光線走直線,而不被球的表面偏折。這些膠球還會加上螢光染料,以便在光學攝影機下觀察。
  2. 切變率:在此指的是顆粒水平速度隨高度的變化率,更廣泛的定義參見延伸閱讀〈流沙、地震、土石,與沙漏裡的物理:「動靜之間」〉。

延伸閱讀

研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook